Analysis of deep complex‐valued convolutional neural networks for MRI reconstruction and phase‐focused applications

卷积神经网络 计算机科学 卷积(计算机科学) 人工智能 深度学习 模式识别(心理学) 相似性(几何) 相(物质) 复杂网络 建筑 算法 网络体系结构 人工神经网络 图像(数学) 物理 量子力学 万维网 艺术 计算机安全 视觉艺术
作者
Elizabeth K. Cole,Joseph Y. Cheng,John M. Pauly,Shreyas Vasanawala
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:86 (2): 1093-1109 被引量:100
标识
DOI:10.1002/mrm.28733
摘要

Purpose Deep learning has had success with MRI reconstruction, but previously published works use real‐valued networks. The few works which have tried complex‐valued networks have not fully assessed their impact on phase. Therefore, the purpose of this work is to fully investigate end‐to‐end complex‐valued convolutional neural networks (CNNs) for accelerated MRI reconstruction and in several phase‐based applications in comparison to 2‐channel real‐valued networks. Methods Several complex‐valued activation functions for MRI reconstruction were implemented, and their performance was compared. Complex‐valued convolution was implemented and tested on an unrolled network architecture and a U‐Net–based architecture over a wide range of network widths and depths with knee, body, and phase‐contrast datasets. Results Quantitative and qualitative results demonstrated that complex‐valued CNNs with complex‐valued convolutions provided superior reconstructions compared to real‐valued convolutions with the same number of trainable parameters for both an unrolled network architecture and a U‐Net–based architecture, and for 3 different datasets. Complex‐valued CNNs consistently had superior normalized RMS error, structural similarity index, and peak SNR compared to real‐valued CNNs. Conclusion Complex‐valued CNNs can enable superior accelerated MRI reconstruction and phase‐based applications such as fat–water separation, and flow quantification compared to real‐valued convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
伶俐乐菱应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
shadow完成签到,获得积分10
2秒前
sen123完成签到,获得积分10
3秒前
123完成签到,获得积分20
4秒前
5秒前
NATURECATCHER完成签到,获得积分10
5秒前
温暖霸完成签到,获得积分10
5秒前
以筱完成签到,获得积分10
6秒前
NexusExplorer应助崔崔采纳,获得10
6秒前
CipherSage应助Passskd采纳,获得10
10秒前
11秒前
子睿完成签到,获得积分10
11秒前
背后雨柏完成签到 ,获得积分10
11秒前
12秒前
nanana发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
五月初夏完成签到,获得积分10
13秒前
hannah发布了新的文献求助10
16秒前
songvv完成签到,获得积分20
17秒前
哟哟哟完成签到,获得积分10
18秒前
18秒前
wanglejia完成签到,获得积分10
18秒前
从容的雪碧完成签到,获得积分10
18秒前
19秒前
Ac完成签到,获得积分10
19秒前
谦让的莆完成签到 ,获得积分10
19秒前
胡图图完成签到,获得积分0
19秒前
崔崔完成签到,获得积分10
20秒前
敖江风云完成签到,获得积分10
20秒前
浮生若梦完成签到 ,获得积分10
22秒前
Passskd发布了新的文献求助10
22秒前
杀出个黎明举报求助违规成功
22秒前
哈基米德举报求助违规成功
22秒前
千跃举报求助违规成功
22秒前
22秒前
Hello应助Ac采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022