Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry

点云 体素 计算机科学 点(几何) 人工智能 激光扫描 计算机视觉 代表(政治) 数学 几何学 政治学 政治 光学 物理 法学 激光器
作者
Yusheng Xu,Xiaohua Tong,Uwe Stilla
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:126: 103675-103675 被引量:152
标识
DOI:10.1016/j.autcon.2021.103675
摘要

Abstract Point clouds acquired through laser scanning and stereo vision techniques have been applied in a wide range of applications, proving to be optimal sources for mapping 3D urban scenes. Point clouds provide 3D spatial coordinates of geometric surfaces, describing the real 3D world with both geometric information and attributes. However, unlike 2D images, raw point clouds are usually unstructured and contain no semantic, geometric, or topological information of objects. This lack of an adequate data structure is a bottleneck for the pre-processing or further application of raw point clouds. Thus, it is generally necessary to organize and structure the 3D discrete points into a higher-level representation, such as voxels. Using voxels to represent discrete points is a common and effective way to organize and structure 3D point clouds. Voxels, similar to pixels in an image, are abstracted 3D units with pre-defined volumes, positions, and attributes, which can be used to structurally represent discrete points in a topologically explicit and information-rich manner. Although methods and algorithms for point clouds in various fields have been frequently reported throughout the last decade, there have been very few reviews summarizing and discussing the voxel-based representation of 3D point clouds in urban scenarios. Therefore, this paper aims to conduct a thorough review of the state-of-the-art methods and applications of voxel-based point cloud representations from a collection of papers in the recent decade. In particular, we focus on the creation and utilization of voxels, as well as the strengths and weaknesses of various methods using voxels. Moreover, we also provide an analysis of the potential of using voxel-based representations in the construction industry. Finally, we provide recommendations on future research directions regarding the future tendency of the voxel-based point cloud representations and its improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老张完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
一氧化二氢完成签到,获得积分10
1秒前
高高电灯胆完成签到,获得积分10
2秒前
LiLi完成签到 ,获得积分10
2秒前
儒雅的蜜粉完成签到,获得积分10
3秒前
美好师完成签到,获得积分10
3秒前
4秒前
4秒前
Duke完成签到,获得积分10
4秒前
情怀应助Janus采纳,获得10
4秒前
炙热的笑翠完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Hao应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得100
7秒前
qin完成签到,获得积分10
8秒前
Bzm100发布了新的文献求助10
8秒前
露露完成签到 ,获得积分10
9秒前
寒冷丹雪完成签到,获得积分10
9秒前
ytg922完成签到,获得积分0
9秒前
cc2001完成签到,获得积分20
10秒前
搜集达人应助小红花采纳,获得10
11秒前
Regina完成签到 ,获得积分10
11秒前
chen完成签到 ,获得积分10
11秒前
蛀牙牙完成签到,获得积分10
11秒前
朴实乐天完成签到,获得积分10
12秒前
唐泽雪穗发布了新的文献求助40
12秒前
gaozengxiang完成签到,获得积分10
12秒前
祁轩完成签到,获得积分10
12秒前
刚国忠完成签到,获得积分20
13秒前
11完成签到 ,获得积分10
14秒前
guard完成签到,获得积分0
14秒前
楚行完成签到 ,获得积分10
14秒前
科研通AI5应助PPD采纳,获得10
16秒前
科研通AI5应助PPD采纳,获得10
16秒前
科研通AI5应助PPD采纳,获得10
16秒前
科研通AI5应助PPD采纳,获得10
16秒前
科研通AI5应助PPD采纳,获得30
16秒前
科研通AI5应助PPD采纳,获得10
16秒前
科研通AI5应助PPD采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066890
求助须知:如何正确求助?哪些是违规求助? 4288788
关于积分的说明 13360535
捐赠科研通 4108184
什么是DOI,文献DOI怎么找? 2249564
邀请新用户注册赠送积分活动 1255029
关于科研通互助平台的介绍 1187492