Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry

人工智能 建筑信息建模 计算机视觉 代表(政治) 三维建模 三维模型 实体造型 可视化
作者
Yusheng Xu,Xiaohua Tong,Uwe Stilla
出处
期刊:Automation in Construction [Elsevier]
卷期号:126: 103675- 被引量:5
标识
DOI:10.1016/j.autcon.2021.103675
摘要

Abstract Point clouds acquired through laser scanning and stereo vision techniques have been applied in a wide range of applications, proving to be optimal sources for mapping 3D urban scenes. Point clouds provide 3D spatial coordinates of geometric surfaces, describing the real 3D world with both geometric information and attributes. However, unlike 2D images, raw point clouds are usually unstructured and contain no semantic, geometric, or topological information of objects. This lack of an adequate data structure is a bottleneck for the pre-processing or further application of raw point clouds. Thus, it is generally necessary to organize and structure the 3D discrete points into a higher-level representation, such as voxels. Using voxels to represent discrete points is a common and effective way to organize and structure 3D point clouds. Voxels, similar to pixels in an image, are abstracted 3D units with pre-defined volumes, positions, and attributes, which can be used to structurally represent discrete points in a topologically explicit and information-rich manner. Although methods and algorithms for point clouds in various fields have been frequently reported throughout the last decade, there have been very few reviews summarizing and discussing the voxel-based representation of 3D point clouds in urban scenarios. Therefore, this paper aims to conduct a thorough review of the state-of-the-art methods and applications of voxel-based point cloud representations from a collection of papers in the recent decade. In particular, we focus on the creation and utilization of voxels, as well as the strengths and weaknesses of various methods using voxels. Moreover, we also provide an analysis of the potential of using voxel-based representations in the construction industry. Finally, we provide recommendations on future research directions regarding the future tendency of the voxel-based point cloud representations and its improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助lu采纳,获得10
刚刚
科研小菜发布了新的文献求助10
1秒前
捞钱阿达完成签到,获得积分10
1秒前
张磊完成签到,获得积分10
1秒前
j736999565发布了新的文献求助10
1秒前
2秒前
oceanao应助听风随影采纳,获得10
2秒前
gogozoco发布了新的文献求助10
2秒前
2秒前
烟花应助sll采纳,获得10
2秒前
2秒前
脑洞疼应助jwhardaway采纳,获得10
2秒前
CipherSage应助xiaozhuzhu采纳,获得10
3秒前
3秒前
哈哈哈哈完成签到,获得积分10
3秒前
汉堡包应助未来的院士采纳,获得10
3秒前
小何同学发布了新的文献求助10
3秒前
我是老大应助赵怡梦采纳,获得30
4秒前
5秒前
6秒前
fafa完成签到 ,获得积分10
6秒前
tt。完成签到,获得积分10
6秒前
三国杀校老弟完成签到,获得积分10
6秒前
6秒前
bkhvwhk发布了新的文献求助10
7秒前
天天快乐应助j736999565采纳,获得10
7秒前
lalala发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
称心鸵鸟完成签到,获得积分10
9秒前
10秒前
呆萌水壶完成签到 ,获得积分10
10秒前
chengs完成签到,获得积分10
11秒前
羊白玉完成签到 ,获得积分10
11秒前
研友_gnv61n完成签到,获得积分10
11秒前
12秒前
12秒前
思源应助nhscyhy采纳,获得10
12秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159124
求助须知:如何正确求助?哪些是违规求助? 2810283
关于积分的说明 7887027
捐赠科研通 2469127
什么是DOI,文献DOI怎么找? 1314668
科研通“疑难数据库(出版商)”最低求助积分说明 630671
版权声明 602012