A Hierarchical Memory Network for Knowledge Tracing

计算机科学 追踪 人工智能 程序设计语言
作者
Sannyuya Liu,Rui Zou,Jianwen Sun,Kai Zhang,Lulu Jiang,Dongbo Zhou,Jing Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:177: 114935-114935 被引量:33
标识
DOI:10.1016/j.eswa.2021.114935
摘要

• Our model simulates human memory by the proposed memory network. • Our model outperforms the traditional deep knowledge tracing models. • Our model finds a more logical correlation between skills. Knowledge Tracing (KT) is a task to acquire students’ mastery level of skills based on their performance in learning process. The existing KT models have gradually achieved improvements in prediction performance. However, they do not well simulate working memory and long-term memory in human memory mechanism, which is closely related to learning process. In our paper, we propose a Hierarchical Memory Network (HMN) to fit human memory mechanism better in KT. The hierarchical memory, an essential component of HMN, is achieved by an external memory matrix and two mechanisms (divide mechanism, decay mechanism). The matrix simulates working memory by working storage and long-term memory by long-term storage through divide mechanism. Furthermore, the working storage can be changed directly, while the long-term storage is changed according to decay rates obtained from decay mechanism. Experiments demonstrate that our model outperforms several classical models in four public datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
调皮帆布鞋完成签到,获得积分10
4秒前
小方完成签到 ,获得积分10
5秒前
lulu发布了新的文献求助30
6秒前
upon发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
camelia关注了科研通微信公众号
13秒前
14秒前
thynkz发布了新的文献求助10
14秒前
科目三应助拾捌采纳,获得10
15秒前
ASIS完成签到,获得积分10
16秒前
舒心莫言完成签到,获得积分10
16秒前
慕青应助平淡的碧菡采纳,获得10
20秒前
21秒前
羊羊羊发布了新的文献求助10
24秒前
YJL发布了新的文献求助10
24秒前
不配.应助研友_ndDGVn采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
情怀应助科研通管家采纳,获得10
26秒前
不配.应助科研通管家采纳,获得20
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
lixiao应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
27秒前
zqingxia发布了新的文献求助10
29秒前
土豆丝炒姜丝应助wzx采纳,获得10
30秒前
camelia发布了新的文献求助10
30秒前
32秒前
义气雍完成签到 ,获得积分10
32秒前
优美亦云完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079