Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile-Edge Computing via Hierarchical Reinforcement Learning

计算机科学 强化学习 分布式计算 可扩展性 调度(生产过程) 移动边缘计算 杠杆(统计) 动态优先级调度 移动设备 计算机网络 服务器 人工智能 服务质量 操作系统 数据库 经济 运营管理
作者
Tao Ren,Jianwei Niu,Bin Dai,Xuefeng Liu,Zheyuan Hu,Mingliang Xu,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (10): 7095-7109 被引量:71
标识
DOI:10.1109/jiot.2021.3071531
摘要

Due to the high maneuverability and flexibility, unmanned aerial vehicles (UAVs) have been considered as a promising paradigm to assist mobile edge computing (MEC) in many scenarios including disaster rescue and field operation. Most existing research focuses on the study of trajectory and computation-offloading scheduling for UAV-assisted MEC in stationary environments, and could face challenges in dynamic environments where the locations of UAVs and mobile devices (MDs) vary significantly. Some latest research attempts to develop scheduling policies for dynamic environments by means of reinforcement learning (RL). However, as these need to explore in high-dimensional state and action space, they may fail to cover in large-scale networks where multiple UAVs serve numerous MDs. To address this challenge, we leverage the idea of "divide-and-conquer" and propose HT3O, a scalable scheduling approach for large-scale UAV-assisted MEC. First, HT3O is built with neural networks via deep RL to obtain real-time scheduling policies for MEC in dynamic environments. More importantly, to make HT3O more scalable, we decompose the scheduling problem into two-layered subproblems and optimize them alternately via hierarchical RL. This not only substantially reduces the complexity of each subproblem, but also improves the convergence efficiency. Experimental results show that HT3O can achieve promising performance improvements over state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助liang405采纳,获得10
刚刚
SciGPT应助LJ采纳,获得10
1秒前
2秒前
浦肯野应助Forest采纳,获得30
2秒前
渝州人应助longtengfei采纳,获得10
2秒前
皇家搓澡师完成签到,获得积分10
2秒前
莫鱼丸发布了新的文献求助20
3秒前
合适友儿发布了新的文献求助20
3秒前
思源应助xiongyue采纳,获得10
3秒前
3秒前
英俊的铭应助秋以南采纳,获得10
5秒前
5秒前
爱静静应助yq采纳,获得30
6秒前
香蕉觅云应助yq采纳,获得30
6秒前
动听汉堡发布了新的文献求助10
6秒前
Ava应助Wmhuahuaood采纳,获得10
6秒前
早睡早起发布了新的文献求助10
6秒前
仁者完成签到,获得积分10
9秒前
9秒前
经钧完成签到 ,获得积分10
11秒前
空空发布了新的文献求助10
12秒前
12秒前
安静采枫完成签到 ,获得积分10
12秒前
dx完成签到,获得积分10
12秒前
liwanyi完成签到,获得积分10
12秒前
13秒前
吃嗯完成签到,获得积分10
13秒前
科研通AI5应助顺心碧菡采纳,获得10
13秒前
14秒前
李爱国应助合适友儿采纳,获得10
15秒前
Baraka发布了新的文献求助10
16秒前
16秒前
minekirito发布了新的文献求助10
17秒前
17秒前
李健应助大气瑾瑜采纳,获得10
17秒前
SDS发布了新的文献求助10
17秒前
Wmhuahuaood发布了新的文献求助10
18秒前
热心的绮山完成签到 ,获得积分10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169