Effects of PARP Inhibitor Therapy on p53-Deficient Hematopoietic Stem and Progenitor Cell Fitness

内科学 医学 肿瘤科 造血干细胞移植 癌症 癌症研究 免疫学 移植
作者
Jeremy T. Baeten,Irenaeus C.C. Chan,Daniel C. Link,Kelly L. Bolton
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 3275-3275 被引量:2
标识
DOI:10.1182/blood-2021-151373
摘要

Abstract Poly (ADP-ribose) polymerase (PARP) inhibitors are an important new class of anti-cancer therapies. Therapy-related myeloid neoplasia (tMN) has been reported following PARPi therapy and is associated with adverse outcomes. We have previously shown, in retrospective data, that prior chemotherapy increases the incidence of clonal hematopoiesis (CH), especially in DNA damage response (DDR) pathway genes including TP53, PPM1D, and CHEK2 and is associated with progression to tMN. In particular, patients who receive PARPi therapy are more likely to have CH compared to other therapies or untreated patients. In the IMPACT study of CH in 10,156 cancer patients, exposure to PARPi were more likely to have CH (33%) compared to untreated patients (16%). This was particularly pronounced for DDR gene mutations, with 25% of PARPi treated patients with DDR CH compared to 2% of untreated patients. In multivariate analysis accounting for demographics and exposure to other chemotherapy or radiation therapy, exposure to PARPi conferred an increased risk of DDR CH (OR = 3.6, 95% CI 1.5-8.5, p = 0.004). From these data, we hypothesize that mutations in DDR pathway genes provide a fitness advantage to hematopoietic stem/progenitor cells (HSPCs) following PARPi treatment, leading to clonal hematopoiesis. A major limitation, however of our previous work in retrospective clinical samples, is the inability to completely adjust for the confounding effect of prior exposure to cytotoxic therapy (in particular platinum therapies) and germline BRCA1/2 mutations; both which have been shown or hypothesized to increase the risk of tMN. To test whether PARPi exposure might provide a fitness advantage to HSPCs independent of prior exposure to other therapies, we first examined the response of CRISPR-gene edited TP53-/- MOLM13 cells to the PARPi Olaparib and, as a control, Cisplatin. As expected, TP53-/- cells had increased resistance to both agents, though the response was much more pronounced in Cisplatin-treated cells (Figure 1A,B). Next, we implemented a mouse model of TP53-mutant clonal hematopoiesis, by generating mixed bone marrow chimeras transplanted with a 1:9 ratio of wildtype (CD45.1) to TP53 R172H+/- (CD45.2) cells. The "baseline" contribution of TP53 R172H+/- (CD45.2) cells to peripheral blood leukocytes 8 weeks after transplantation was determined by flow cytometry. Mice were then randomized into the following three cohorts: 1) Cisplatin (6mg/kg on days 1, 8, and 15); 2) Olaparib (50mg/kg daily for 3 weeks); and 3) vehicle alone. Peripheral blood chimerism was assessed 3, 9, and 12 weeks after initiating treatment. In addition, the contribution of TP53 R172H+/- to lineage -Sca1 +Kit + (LSK) cells in the bone marrow was determined. Cisplatin treatment resulted in a significant increase in the contribution of TP53 R172H+ to peripheral blood total leukocytes, granulocytes, and bone marrow LSK cells (Figure 1C-E). In contrast, Olaparib treated mice showed no change in CD45 chimerism. From these results we conclude that p53-deficiency does not confer a strong fitness advantage to mouse HSPCs in response to PARPi treatment. This suggests that the strong association observed between prior PARPi therapy, CH and tMN in clinical cohorts may in part be due to the confounding effects of prior (often heavy) exposure to platinum-based therapy. However, the majority of patients receiving PARPi have germline heterozygous BRCA1/2 mutations that could be contributing to their hematopoietic response to PARPi therapy. Experiments are underway to test this possibility by analyzing mixed bone marrow chimeras carrying heterozygous mutations of both Brca1 and Trp53. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bin发布了新的文献求助10
刚刚
科研通AI2S应助无敌鱼采纳,获得10
刚刚
完美世界应助无敌鱼采纳,获得10
刚刚
刚刚
乐观银耳汤完成签到,获得积分10
1秒前
ss发布了新的文献求助30
1秒前
巴裘拉完成签到,获得积分10
2秒前
充电宝应助尔信采纳,获得50
2秒前
kali完成签到 ,获得积分10
2秒前
小马甲应助勤奋的沛儿采纳,获得10
3秒前
SCI的李发布了新的文献求助10
4秒前
Sunshine完成签到,获得积分0
6秒前
赘婿应助熊二浪采纳,获得10
7秒前
7秒前
阡陌完成签到 ,获得积分10
8秒前
8秒前
8秒前
今后应助席楠采纳,获得10
9秒前
小蘑菇应助li采纳,获得10
10秒前
ZSZ完成签到,获得积分10
11秒前
Akim应助kkkk采纳,获得10
11秒前
浅梦完成签到,获得积分10
12秒前
12秒前
13秒前
A_Brute完成签到,获得积分10
13秒前
13秒前
13秒前
lxlnb发布了新的文献求助10
13秒前
Aeastie发布了新的文献求助10
14秒前
今天只做一件事完成签到,获得积分0
14秒前
ld完成签到,获得积分20
14秒前
15秒前
上官若男应助DrXu采纳,获得10
15秒前
15秒前
DOG完成签到,获得积分10
15秒前
仲夏发布了新的文献求助10
16秒前
zsj完成签到,获得积分10
17秒前
jason发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608