光伏系统
最大功率点跟踪
计算机科学
控制重构
智能控制
电子工程
工程类
人工智能
电气工程
嵌入式系统
电压
逆变器
作者
Ekaterina A. Engel,И В Ковалев,N. A. Testoyedov,N E Engel
出处
期刊:Energies
[MDPI AG]
日期:2021-11-29
卷期号:14 (23): 7969-7969
被引量:3
摘要
The global maximum power point tracking of a PV array under partial shading represents a global optimization problem. Conventional maximum power point tracking algorithms fail to track the global maximum power point, and global optimization algorithms do not provide global maximum power point in real-time mode due to a slow convergence process. This paper presents an intelligent reconfigurable photovoltaic system on the basis of a modified fuzzy neural net that includes a convolutional block, recurrent networks, and fuzzy units. We tune the modified fuzzy neural net based on modified multi-dimension particle swarm optimization. Based on the processing of the sensors’ signals and the photovoltaic array’s image, the tuned modified fuzzy neural net generates an electrical interconnection matrix of a photovoltaic total-cross-tied array, which reaches the global maximum power point under non-homogeneous insolation. Thus, the intelligent reconfigurable photovoltaic system represents an effective machine learning application in a photovoltaic system. We demonstrate the advantages of the created intelligent reconfigurable photovoltaic system by simulations. The simulation results reveal robustness against photovoltaic system uncertainties and better performance and control speed of the proposed intelligent reconfigurable photovoltaic system under non-homogeneous insolation as compared to a GA-based reconfiguration total-cross-tied photovoltaic system.
科研通智能强力驱动
Strongly Powered by AbleSci AI