Filter Bank Convolutional Neural Network for Short Time-Window Steady-State Visual Evoked Potential Classification

卷积神经网络 计算机科学 快速傅里叶变换 时域 脑-机接口 滤波器(信号处理) 窗口(计算) 模式识别(心理学) 人工智能 频域 领域(数学分析) 语音识别 算法 脑电图 数学 计算机视觉 操作系统 精神科 数学分析 心理学
作者
Wenlong Ding,Jianhua Shan,Bin Fang,Chengyin Wang,Fuchun Sun,Xinyue Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 2615-2624 被引量:26
标识
DOI:10.1109/tnsre.2021.3132162
摘要

Convolutional neural network (CNN) has been gradually applied to steady-state visual evoked potential (SSVEP) of the brain-computer interface (BCI). Frequency-domain features extracted by fast Fourier Transform (FFT) or time-domain signals are used as network input. In the frequency-domain diagram, the features at the short time-window are not obvious and the phase information of each electrode channel may be ignored as well. Hence we propose a time-domain-based CNN method (tCNN), using the time-domain signal as network input. And the filter bank tCNN (FB-tCNN) is further proposed to improve its performance in the short time-window. We compare FB-tCNN with the canonical correlation analysis (CCA) methods and other CNN methods in our dataset and public dataset. And FB-tCNN shows superior performance at the short time-window in the intra-individual test. At the 0.2 s time-window, the accuracy of our method reaches 88.36 ± 4.89 % in our dataset, 77.78 ± 2.16 % and 79.21 ± 1.80 % respectively in the two sessions of the public dataset, which is higher than other methods. The impacts of training-subject number and data length in inter-individual or cross-individual are studied. FB-tCNN shows the potential in implementing inter-individual BCI. Further analysis shows that the deep learning method is easier in terms of the implementation of the asynchronous BCI system than the training data-driven CCA. The code is available for reproducibility at https://github.com/DingWenl/FB-tCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子鱼发布了新的文献求助10
2秒前
zhan发布了新的文献求助10
2秒前
王加通完成签到,获得积分10
3秒前
4秒前
大个应助月亮采纳,获得10
7秒前
7秒前
顾矜应助诗亭采纳,获得10
8秒前
杨枝甘露完成签到,获得积分20
8秒前
123发布了新的文献求助10
8秒前
qwe完成签到,获得积分10
9秒前
zhan完成签到,获得积分10
9秒前
fcc完成签到,获得积分20
9秒前
秋季完成签到,获得积分10
10秒前
chang发布了新的文献求助10
11秒前
研友_VZG7GZ应助Ffffff采纳,获得10
11秒前
科研小趴菜完成签到,获得积分10
12秒前
12秒前
能接受微辣完成签到,获得积分10
13秒前
lzx应助摇不滚摇滚采纳,获得100
14秒前
17秒前
18秒前
单薄店员发布了新的文献求助10
19秒前
周久完成签到 ,获得积分10
20秒前
妞妞发布了新的文献求助10
21秒前
22秒前
张emo发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
24秒前
CodeCraft应助义气的巨人采纳,获得10
25秒前
26秒前
顺利毕业耶耶耶完成签到,获得积分10
27秒前
28秒前
zxe发布了新的文献求助30
28秒前
凉翊发布了新的文献求助10
28秒前
29秒前
GodZ完成签到,获得积分10
29秒前
云梦泽发布了新的文献求助10
30秒前
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501