Filter Bank Convolutional Neural Network for Short Time-Window Steady-State Visual Evoked Potential Classification

卷积神经网络 计算机科学 快速傅里叶变换 时域 脑-机接口 滤波器(信号处理) 窗口(计算) 模式识别(心理学) 人工智能 频域 领域(数学分析) 语音识别 算法 脑电图 数学 计算机视觉 操作系统 精神科 数学分析 心理学
作者
Wenlong Ding,Jianhua Shan,Bin Fang,Chengyin Wang,Fuchun Sun,Xinyue Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 2615-2624 被引量:26
标识
DOI:10.1109/tnsre.2021.3132162
摘要

Convolutional neural network (CNN) has been gradually applied to steady-state visual evoked potential (SSVEP) of the brain-computer interface (BCI). Frequency-domain features extracted by fast Fourier Transform (FFT) or time-domain signals are used as network input. In the frequency-domain diagram, the features at the short time-window are not obvious and the phase information of each electrode channel may be ignored as well. Hence we propose a time-domain-based CNN method (tCNN), using the time-domain signal as network input. And the filter bank tCNN (FB-tCNN) is further proposed to improve its performance in the short time-window. We compare FB-tCNN with the canonical correlation analysis (CCA) methods and other CNN methods in our dataset and public dataset. And FB-tCNN shows superior performance at the short time-window in the intra-individual test. At the 0.2 s time-window, the accuracy of our method reaches 88.36 ± 4.89 % in our dataset, 77.78 ± 2.16 % and 79.21 ± 1.80 % respectively in the two sessions of the public dataset, which is higher than other methods. The impacts of training-subject number and data length in inter-individual or cross-individual are studied. FB-tCNN shows the potential in implementing inter-individual BCI. Further analysis shows that the deep learning method is easier in terms of the implementation of the asynchronous BCI system than the training data-driven CCA. The code is available for reproducibility at https://github.com/DingWenl/FB-tCNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUNWENREQUEST发布了新的文献求助10
刚刚
大模型应助匹诺曹采纳,获得10
1秒前
ding应助过时的又槐采纳,获得10
2秒前
5秒前
鄙视注册完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
落寞溪灵完成签到 ,获得积分10
9秒前
玖玖柒idol完成签到,获得积分10
9秒前
曌虞完成签到,获得积分10
9秒前
10秒前
啥,这都是啥完成签到,获得积分10
10秒前
皮皮桂发布了新的文献求助10
11秒前
12秒前
大大发布了新的文献求助10
12秒前
13秒前
orixero应助wang1090采纳,获得30
15秒前
15秒前
l11x29发布了新的文献求助10
17秒前
lin完成签到,获得积分10
17秒前
大侠发布了新的文献求助10
18秒前
18秒前
是锦锦呀完成签到,获得积分10
18秒前
18秒前
李秋静发布了新的文献求助10
19秒前
zhen发布了新的文献求助50
21秒前
是锦锦呀发布了新的文献求助60
21秒前
Khr1stINK发布了新的文献求助10
23秒前
24秒前
NexusExplorer应助Dddd采纳,获得10
26秒前
26秒前
Akim应助zhaowenxian采纳,获得10
27秒前
谦让的鹏煊完成签到,获得积分10
28秒前
zccc完成签到 ,获得积分10
29秒前
30秒前
hhzz发布了新的文献求助10
31秒前
坚定的雁完成签到 ,获得积分10
32秒前
33秒前
两先生完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808