Characterizing impact of positive lymph node number in endometrial cancer using machine-learning: A better prognostic indicator than FIGO staging?

医学 子宫内膜癌 比例危险模型 危险系数 肿瘤科 淋巴结 内科学 单变量分析 癌症 分级(工程) 多元分析 置信区间 工程类 土木工程
作者
Colton Ladbury,Richard Li,Jay Shiao,Jason Liu,Mihaela Cristea,Ernest Han,Thanh H. Dellinger,Stephen Lee,Wenge Wang,Christine M. Fisher,Yi‐Jen Chen,Arya Amini,Tyler P. Robin,Scott Glaser
出处
期刊:Gynecologic Oncology [Elsevier]
卷期号:164 (1): 39-45 被引量:14
标识
DOI:10.1016/j.ygyno.2021.11.007
摘要

Number of involved lymph nodes (LNs) is a crucial stratification factor in staging of numerous disease sites, but has not been incorporated for endometrial cancer. We evaluated whether number of involved LNs provide improved prognostic value.Patients diagnosed with node-positive endometrial adenocarcinoma without distant metastasis were identified in the National Cancer Database. We trained a machine-learning based model of overall survival. Shapley additive explanation values (SHAP) based on the model were used to identify cutoffs of number of LNs involved. Results were validated using a Cox proportional hazards regression model.We identified 11,381 patients with endometrial cancer meeting the inclusion criteria. Using the SHAP values, we selected the following thresholds: 1-3 LNs, 4-5 LNs, and 6+ LNs. The 3-year OS was 82.0% for 1-3 LNs, 74.3% for 4-5 LNs (hazard ratio [HR] 1.38; p < 0.001), and 59.9% for 6+ LNs (HR 2.23; p < 0.001). On univariate Cox regression, PA nodal involvement was a significant predictor of OS (HR 1.20; p < 0.001) but was not significant on multivariate analysis when number of LNs was included (HR 1.05; p = 0.273). Additionally, we identified an interaction between adjuvant therapy and number of involved LNs. Patients with 1-3 involved LNs had 3-year OS of 85.2%, 78.7% and 74.2% with chemoradiation (CRT), chemotherapy, and radiation, respectively. Patients with 6+ involved LNs had 3-yr OS of 67.8%, 49.6%, and 48.9% with CRT, chemotherapy, and radiation, respectively (p < 0.001).Number of involved LNs is a stronger prognostic and predictive factor compared to PA node involvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助李来仪采纳,获得10
刚刚
威康宇宙发布了新的文献求助10
刚刚
小蘑菇应助润润轩轩采纳,获得10
刚刚
1秒前
1秒前
个性尔槐发布了新的文献求助10
1秒前
xiangxl完成签到,获得积分10
1秒前
fang完成签到 ,获得积分10
2秒前
汉堡包应助zhui采纳,获得10
2秒前
2秒前
万万完成签到,获得积分10
2秒前
sci完成签到,获得积分10
3秒前
3秒前
科研通AI5应助马静雨采纳,获得50
3秒前
Lucas应助酷炫板凳采纳,获得10
3秒前
3秒前
FFFFFFG完成签到,获得积分10
4秒前
完美世界应助0000采纳,获得30
5秒前
rosexu发布了新的文献求助10
5秒前
爆米花应助sv采纳,获得10
5秒前
5秒前
搞怪网络完成签到,获得积分10
7秒前
7秒前
liudiqiu应助lh采纳,获得10
7秒前
命运的X号发布了新的文献求助10
7秒前
7秒前
满座关注了科研通微信公众号
8秒前
FashionBoy应助侦察兵采纳,获得10
8秒前
8秒前
个性尔槐完成签到,获得积分10
8秒前
esdeath完成签到,获得积分10
8秒前
13504544355完成签到 ,获得积分10
8秒前
陶醉的蜜蜂完成签到 ,获得积分10
8秒前
9秒前
坦率井完成签到,获得积分10
9秒前
9秒前
善学以致用应助代萌萌采纳,获得10
9秒前
9秒前
捉迷藏应助tengli采纳,获得10
9秒前
shirleeyeahe发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794