Predicting and Understanding Student Learning Performance Using Multi-Source Sparse Attention Convolutional Neural Networks

计算机科学 人工智能 Softmax函数 深度学习 机器学习 卷积神经网络 分类器(UML) 多任务学习 任务(项目管理) 经济 管理
作者
Yupei Zhang,Rui An,Shuhui Liu,Jiaqi Cui,Xuequn Shang
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:9 (1): 118-132 被引量:18
标识
DOI:10.1109/tbdata.2021.3125204
摘要

Predicting and understanding student learning performance has been a long-standing task in learning science, which can benefit personalized teaching and learning. This study shows that the progress towards this task can be accelerated by using learning record data to feed a deep learning model that considers the intrinsic course association and the structured features. We proposed a multi-source sparse attention convolutional neural network (MsaCNN) to predict the course grades in a general formulation. MsaCNN adopts multi-scale convolution kernels on student grade records to capture structured features, a global attention strategy to discover the relationship between courses, and multiple input-heads to integrate multi-source features. All achieved features are then poured into a softmax classifier towards an end-to-end supervised deep learning model. Conducting insights into higher education on real-world university datasets, the results show that MsaCNN achieves better performance than traditional methods and delivers an interpretation of student performance by virtue of the resulted course relationships. Inspired by this interpretation, we created an association map for all mentioned courses, followed by evaluating the map with a questionnaire survey. This study provides computer-aided system tools and discovers the course-space map from the educational data, potentially facilitating the personalized learning progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助MDW采纳,获得10
刚刚
小马甲应助婷婷小笑采纳,获得10
刚刚
ikun完成签到,获得积分10
1秒前
舒心白山发布了新的文献求助10
1秒前
1秒前
2秒前
unaive完成签到,获得积分10
3秒前
lxiaok完成签到,获得积分10
4秒前
4秒前
4秒前
成就鲂完成签到,获得积分10
4秒前
5秒前
斯文败类应助嗯qq采纳,获得10
5秒前
可爱的函函应助小智采纳,获得10
6秒前
Mat完成签到,获得积分10
6秒前
EZ完成签到 ,获得积分10
7秒前
林佳一完成签到,获得积分10
7秒前
lihaifeng发布了新的文献求助10
8秒前
风-FBDD发布了新的文献求助10
8秒前
bio-tang发布了新的文献求助10
9秒前
9秒前
卡卡西完成签到,获得积分0
10秒前
10秒前
默默问晴发布了新的文献求助10
11秒前
嗯qq完成签到,获得积分10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
march完成签到,获得积分20
15秒前
张小星发布了新的文献求助10
15秒前
16秒前
嗯qq发布了新的文献求助10
16秒前
王京华发布了新的文献求助10
17秒前
18秒前
张小星完成签到,获得积分10
19秒前
MDW发布了新的文献求助10
20秒前
duna发布了新的文献求助30
21秒前
鸣笛应助cc采纳,获得30
21秒前
lalala完成签到,获得积分10
23秒前
所所应助丰富幻悲采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951130
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082541
捐赠科研通 3226963
什么是DOI,文献DOI怎么找? 1784094
邀请新用户注册赠送积分活动 868183
科研通“疑难数据库(出版商)”最低求助积分说明 801089