亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors

聚类分析 光谱聚类 CURE数据聚类算法 计算机科学 相关聚类 k-最近邻算法 模式识别(心理学) 最近邻链算法 树冠聚类算法 图形 算法 噪音(视频) 人工智能 数据挖掘 理论计算机科学 图像(数学)
作者
Jeong-Hun Kim,Jong-Hyeok Choi,Young‐Ho Park,Carson K. Leung,Aziz Nasridinov
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 152616-152627 被引量:12
标识
DOI:10.1109/access.2021.3126854
摘要

Spectral clustering is a well-known graph-theoretic clustering algorithm. Although spectral clustering has several desirable advantages (such as the capability of discovering non-convex clusters and applicability to any data type), it often leads to incorrect clustering results because of high sensitivity to noise points. In this study, we propose a robust spectral clustering algorithm known as KNN-SC that can discover exact clusters by decreasing the influence of noise points. To achieve this goal, we present a novel approach that filters out potential noise points by estimating the density difference between data points using k-nearest neighbors. In addition, we introduce a novel method for generating a similarity graph in which various densities of data points are effectively represented by expanding the nearest neighbor graph. Experimental results on synthetic and real-world datasets demonstrate that KNN-SC achieves significant performance improvement over many state-of-the-art spectral clustering algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安雯完成签到 ,获得积分10
3秒前
3秒前
骆其为清完成签到,获得积分10
5秒前
LEMON发布了新的文献求助10
7秒前
8秒前
hoy完成签到 ,获得积分10
9秒前
自然怀蕾发布了新的文献求助10
11秒前
阿幽发布了新的文献求助10
14秒前
伟大的鲁路皇完成签到,获得积分10
16秒前
梨炒栗子完成签到,获得积分10
20秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
24秒前
牧羊人发布了新的文献求助10
28秒前
null应助Pendulium采纳,获得10
34秒前
CNY完成签到 ,获得积分10
36秒前
38秒前
41秒前
量子星尘发布了新的文献求助10
50秒前
安静的从梦完成签到 ,获得积分10
52秒前
陈杰完成签到,获得积分10
58秒前
阿幽完成签到 ,获得积分10
59秒前
1分钟前
zachary009完成签到 ,获得积分10
1分钟前
科研通AI6应助字母采纳,获得10
1分钟前
CapQing应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
1分钟前
旺仔先生完成签到,获得积分0
1分钟前
聪明勇敢有力气完成签到 ,获得积分10
1分钟前
1分钟前
MasterE完成签到,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
MasterE发布了新的文献求助10
1分钟前
lyh完成签到,获得积分10
1分钟前
null应助Pendulium采纳,获得10
1分钟前
点点发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
乐乐应助牧羊人采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595648
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817947
捐赠科研通 4651117
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469743