Machine learning methods for modelling the gasification and pyrolysis of biomass and waste

可解释性 机器学习 计算机科学 航程(航空) 人工神经网络 多样性(控制论) 人工智能 支持向量机 生物量(生态学) 生化工程 工程类 海洋学 地质学 航空航天工程
作者
Simon Ascher,Ian Watson,Siming You
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:155: 111902-111902 被引量:82
标识
DOI:10.1016/j.rser.2021.111902
摘要

Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的十二完成签到 ,获得积分10
刚刚
Hua完成签到,获得积分10
3秒前
orixero应助ljx采纳,获得10
4秒前
修士完成签到 ,获得积分10
7秒前
HEHNJJ完成签到,获得积分10
7秒前
领导范儿应助竹荚鱼采纳,获得10
7秒前
nini完成签到,获得积分10
7秒前
炸翻芋头完成签到,获得积分20
10秒前
11秒前
阿包完成签到 ,获得积分10
16秒前
CGBY完成签到 ,获得积分10
21秒前
Justtry完成签到,获得积分10
21秒前
22秒前
汉堡包应助十八稀采纳,获得10
23秒前
TomasLiu完成签到,获得积分10
23秒前
今后应助ASC采纳,获得10
26秒前
文瑄完成签到 ,获得积分10
26秒前
ljx发布了新的文献求助10
27秒前
17835152738完成签到,获得积分10
28秒前
王九八发布了新的文献求助10
29秒前
fawr完成签到 ,获得积分10
29秒前
着急的早晨完成签到 ,获得积分10
29秒前
31秒前
苏苏诺诺2023完成签到,获得积分10
35秒前
七七完成签到,获得积分10
36秒前
科研科研完成签到 ,获得积分10
36秒前
竹荚鱼发布了新的文献求助10
36秒前
小吕完成签到,获得积分10
36秒前
37秒前
xfy完成签到,获得积分10
38秒前
222完成签到,获得积分10
40秒前
41秒前
小吕完成签到,获得积分10
42秒前
我是老大应助feilu采纳,获得10
42秒前
FashionBoy应助Nelson采纳,获得10
45秒前
一二三完成签到,获得积分10
46秒前
46秒前
47秒前
邵燚铭完成签到 ,获得积分10
49秒前
七栀完成签到,获得积分10
50秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268979
求助须知:如何正确求助?哪些是违规求助? 2908566
关于积分的说明 8345963
捐赠科研通 2578735
什么是DOI,文献DOI怎么找? 1402393
科研通“疑难数据库(出版商)”最低求助积分说明 655414
邀请新用户注册赠送积分活动 634562