Machine learning methods for modelling the gasification and pyrolysis of biomass and waste

可解释性 机器学习 计算机科学 航程(航空) 人工神经网络 多样性(控制论) 人工智能 支持向量机 生物量(生态学) 生化工程 工程类 海洋学 地质学 航空航天工程
作者
Simon Ascher,Ian Watson,Siming You
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:155: 111902-111902 被引量:82
标识
DOI:10.1016/j.rser.2021.111902
摘要

Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙傲天完成签到,获得积分10
1秒前
我现在弱得可怕完成签到,获得积分10
2秒前
小螃蟹发布了新的文献求助10
3秒前
朱建军应助rh1006采纳,获得10
3秒前
高高的坤完成签到 ,获得积分10
4秒前
zzzqqq完成签到,获得积分10
4秒前
hsm完成签到,获得积分10
5秒前
所所应助11111采纳,获得10
6秒前
Eton完成签到,获得积分10
6秒前
开心的西瓜完成签到,获得积分10
6秒前
clone2012完成签到,获得积分10
8秒前
shuangyanli完成签到,获得积分10
10秒前
YK完成签到,获得积分10
10秒前
luoxuezhiyin完成签到,获得积分10
12秒前
12秒前
Raki完成签到,获得积分10
12秒前
12秒前
123完成签到,获得积分10
13秒前
清新的翠完成签到,获得积分10
13秒前
柒咩咩完成签到 ,获得积分10
13秒前
缥缈的初阳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Tree完成签到 ,获得积分10
14秒前
yan完成签到,获得积分10
14秒前
子书辞完成签到,获得积分10
14秒前
zhuling完成签到,获得积分10
14秒前
荡乎宇宙如虚舟完成签到,获得积分10
15秒前
rh1006完成签到,获得积分10
15秒前
覃纪隆完成签到,获得积分10
16秒前
小螃蟹完成签到,获得积分10
17秒前
chengqin完成签到 ,获得积分10
17秒前
17秒前
18秒前
ttyhtg完成签到,获得积分10
18秒前
留无影完成签到,获得积分10
18秒前
完美的鹤完成签到,获得积分10
19秒前
愉快书琴发布了新的文献求助10
19秒前
cc完成签到,获得积分10
19秒前
19秒前
ppat5012完成签到 ,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259