Machine learning methods for modelling the gasification and pyrolysis of biomass and waste

可解释性 机器学习 计算机科学 航程(航空) 人工神经网络 多样性(控制论) 人工智能 支持向量机 生物量(生态学) 工艺工程 生化工程 工程类 海洋学 地质学 航空航天工程
作者
Simon Ascher,Ian Watson,Siming You
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:155: 111902-111902 被引量:201
标识
DOI:10.1016/j.rser.2021.111902
摘要

Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不与旋覆应助饱满鼠标采纳,获得10
刚刚
吕方完成签到,获得积分10
2秒前
2秒前
huxlan完成签到,获得积分0
2秒前
琳琳发布了新的文献求助10
3秒前
3秒前
6秒前
7秒前
7秒前
维生素完成签到,获得积分10
8秒前
8秒前
土土完成签到 ,获得积分10
9秒前
11秒前
大个应助鲤鱼越越采纳,获得10
11秒前
光亮雁玉发布了新的文献求助10
12秒前
橙子完成签到,获得积分10
13秒前
Gzdaigzn完成签到,获得积分10
14秒前
16秒前
整齐的翠梅完成签到 ,获得积分10
16秒前
18秒前
852应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
wq完成签到,获得积分10
19秒前
暴躁的沛柔完成签到,获得积分10
19秒前
慕采白发布了新的文献求助20
20秒前
欢呼妙彤发布了新的文献求助30
21秒前
打打应助刻苦蚂蚁采纳,获得10
21秒前
23秒前
清爽沛槐发布了新的文献求助10
24秒前
Ava应助欢呼妙彤采纳,获得10
25秒前
搜集达人应助rt123123采纳,获得10
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968002
求助须知:如何正确求助?哪些是违规求助? 4225512
关于积分的说明 13159597
捐赠科研通 4012387
什么是DOI,文献DOI怎么找? 2195547
邀请新用户注册赠送积分活动 1208945
关于科研通互助平台的介绍 1122967