Machine learning methods for modelling the gasification and pyrolysis of biomass and waste

可解释性 机器学习 计算机科学 航程(航空) 人工神经网络 多样性(控制论) 人工智能 支持向量机 生物量(生态学) 工艺工程 生化工程 工程类 海洋学 地质学 航空航天工程
作者
Simon Ascher,Ian Watson,Siming You
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:155: 111902-111902 被引量:201
标识
DOI:10.1016/j.rser.2021.111902
摘要

Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夜微凉完成签到,获得积分10
刚刚
刚刚
刚刚
花花发布了新的文献求助20
刚刚
攒星星完成签到,获得积分10
刚刚
sugarballer完成签到,获得积分10
刚刚
1秒前
齐小妮完成签到,获得积分20
1秒前
卡卡卡卡卡卡完成签到,获得积分10
2秒前
imemorizedpi完成签到,获得积分10
2秒前
dong发布了新的文献求助30
2秒前
2秒前
李振博发布了新的文献求助10
3秒前
yl发布了新的文献求助10
3秒前
3秒前
个性的紫菜应助江鑫楷采纳,获得10
3秒前
李牧发布了新的文献求助10
4秒前
高大的向南完成签到,获得积分10
4秒前
xdf完成签到,获得积分10
4秒前
打打应助sdd采纳,获得10
4秒前
nigthsun完成签到,获得积分20
5秒前
爱学习的小常完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
甜美鬼神发布了新的文献求助10
7秒前
7秒前
yeu103325完成签到,获得积分10
8秒前
大鱼发布了新的文献求助10
8秒前
9秒前
9秒前
壮观以松完成签到,获得积分10
9秒前
丘比特应助忐忑的黑猫采纳,获得10
9秒前
9秒前
dahuihui完成签到,获得积分10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559