Machine learning methods for modelling the gasification and pyrolysis of biomass and waste

可解释性 机器学习 计算机科学 航程(航空) 人工神经网络 多样性(控制论) 人工智能 支持向量机 生物量(生态学) 工艺工程 生化工程 工程类 海洋学 地质学 航空航天工程
作者
Simon Ascher,Ian Watson,Siming You
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:155: 111902-111902 被引量:201
标识
DOI:10.1016/j.rser.2021.111902
摘要

Over the past two decades, the use of machine learning (ML) methods to model biomass and waste gasification/pyrolysis has increased rapidly. Only 70 papers were published in the 2000s compared to a total of 549 publications in the 2010s. However, the approaches and findings have yet to be systematically reviewed. In this work, the machine learning methods most commonly employed for modelling gasification and pyrolysis processes are discussed with reference to their applications, merits, and limitations. Whilst coefficients of determination (R2) can be difficult to compare directly, due to some studies having greatly different approaches and aims, most studies consistently achieved a high prediction accuracy with R2 > 0.90. Artificial neural networks have been most widely used due to their potential to learn highly non-linear input-output relationships. However, a variety of methods (e.g. regression methods, tree-based methods, and support vector machines) are appropriate depending on the application, data availability, model speed, etc. It is concluded that ML has great potential for the development of models with greater accuracy. Some advantages of machine learning models over existing models are their ability to incorporate relevant non-numerical parameters and the power to generate a multitude of solutions for a wide range of input parameters. More emphasis should be placed on model interpretability in order to better understand the processes being studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助i7采纳,获得10
刚刚
无花果应助dudu采纳,获得30
1秒前
火星上秋尽完成签到,获得积分10
2秒前
2秒前
2秒前
太阳发布了新的文献求助10
2秒前
gggggggbao完成签到,获得积分10
3秒前
加贺发布了新的文献求助10
3秒前
4秒前
旷意发布了新的文献求助10
4秒前
Lexine发布了新的文献求助10
5秒前
5秒前
jeil完成签到,获得积分10
6秒前
鱼鱼子999发布了新的文献求助10
6秒前
AamirAli完成签到,获得积分10
7秒前
在水一方应助太阳采纳,获得10
7秒前
田様应助gggggggbao采纳,获得10
7秒前
8秒前
简单的鲜花完成签到,获得积分10
8秒前
科研通AI6应助lily采纳,获得10
8秒前
杨锐完成签到,获得积分10
9秒前
风趣从霜完成签到,获得积分10
9秒前
从容的完成签到 ,获得积分10
10秒前
11秒前
11秒前
ssy发布了新的文献求助10
11秒前
感动城完成签到,获得积分10
12秒前
儒雅的小懒虫完成签到 ,获得积分10
14秒前
mika910完成签到 ,获得积分10
14秒前
14秒前
15秒前
ybouo完成签到,获得积分10
16秒前
122456完成签到,获得积分10
16秒前
华国锋应助加贺采纳,获得20
17秒前
Jave发布了新的文献求助10
17秒前
ssy完成签到,获得积分10
18秒前
小蘑菇应助Tao采纳,获得10
18秒前
田様应助可靠雪雪采纳,获得10
20秒前
领导范儿应助嘻嘻采纳,获得10
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262