Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颖zi关注了科研通微信公众号
刚刚
Qing发布了新的文献求助10
1秒前
roshan发布了新的文献求助10
2秒前
4秒前
4秒前
科研小谢完成签到,获得积分10
4秒前
林小不脏完成签到,获得积分10
6秒前
华仔应助凡凡没烦恼采纳,获得10
7秒前
英俊的铭应助空心阁人采纳,获得10
8秒前
8秒前
香蕉觅云应助倩青春采纳,获得10
9秒前
yjn完成签到,获得积分10
10秒前
12秒前
猪猪女孩完成签到 ,获得积分10
13秒前
科目三应助lucky采纳,获得10
13秒前
沚沐发布了新的文献求助10
13秒前
嘉嘉琦发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
Garra9822完成签到 ,获得积分10
16秒前
FashionBoy应助CikY采纳,获得10
16秒前
18秒前
纳米仁给纳米仁的求助进行了留言
19秒前
空心阁人发布了新的文献求助10
19秒前
颖zi发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
XYC应助Hyh_orz采纳,获得50
22秒前
沚沐完成签到,获得积分10
23秒前
25秒前
嘉嘉琦完成签到,获得积分10
26秒前
倩青春发布了新的文献求助10
26秒前
丘比特应助wangyup采纳,获得10
27秒前
小只发布了新的文献求助10
27秒前
yuan完成签到,获得积分10
28秒前
loop完成签到,获得积分10
29秒前
菲菲呀发布了新的文献求助10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425