重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞惮发布了新的文献求助10
刚刚
刚刚
顺利葵阴发布了新的文献求助10
刚刚
小蘑菇应助wangqianyu采纳,获得30
刚刚
脑壳疼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Owen应助rnanoda采纳,获得10
1秒前
孤云出岫发布了新的文献求助10
1秒前
1秒前
Zhongdada完成签到 ,获得积分10
2秒前
听话的天荷关注了科研通微信公众号
2秒前
叶叶叶发布了新的文献求助10
3秒前
3秒前
CipherSage应助DXQ采纳,获得10
3秒前
Niko发布了新的文献求助10
4秒前
领导范儿应助平淡的豁采纳,获得10
4秒前
4秒前
lilili2060发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
dandan完成签到 ,获得积分10
5秒前
5秒前
范范完成签到,获得积分10
6秒前
正直纸飞机完成签到,获得积分10
6秒前
耗尽完成签到,获得积分10
6秒前
西溪完成签到,获得积分10
6秒前
6秒前
liliping完成签到,获得积分10
6秒前
QQ通完成签到,获得积分20
7秒前
牧听莲发布了新的文献求助10
7秒前
runzhi发布了新的文献求助10
7秒前
斯文败类应助rover采纳,获得10
8秒前
8秒前
归尘发布了新的文献求助10
8秒前
8秒前
科研通AI6应助无限绮南采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466797
求助须知:如何正确求助?哪些是违规求助? 4570521
关于积分的说明 14325828
捐赠科研通 4497083
什么是DOI,文献DOI怎么找? 2463730
邀请新用户注册赠送积分活动 1452656
关于科研通互助平台的介绍 1427590