Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:15
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鱼完成签到 ,获得积分10
1秒前
酷波er应助XSY采纳,获得10
1秒前
EVAN完成签到,获得积分10
1秒前
acihk发布了新的文献求助10
1秒前
wangsenyu完成签到 ,获得积分10
2秒前
Soleil发布了新的文献求助10
2秒前
李朝富发布了新的文献求助10
2秒前
Duke发布了新的文献求助10
3秒前
深情安青应助李朝富采纳,获得10
6秒前
6秒前
木子李完成签到,获得积分10
6秒前
8秒前
桂圆完成签到 ,获得积分10
8秒前
8秒前
Mayer1234088完成签到,获得积分20
9秒前
BWY完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
www发布了新的文献求助10
13秒前
领导范儿应助小王院士采纳,获得10
13秒前
明亮冰枫完成签到,获得积分10
13秒前
13秒前
伊倾发布了新的文献求助10
13秒前
英俊的铭应助爱听歌笑寒采纳,获得10
17秒前
17秒前
PHILIP841018发布了新的文献求助10
18秒前
西瓜完成签到,获得积分10
20秒前
20秒前
21秒前
24秒前
xuli21315完成签到 ,获得积分10
24秒前
25秒前
26秒前
26秒前
毛豆爸爸应助早点毕业采纳,获得10
27秒前
海棠朵朵发布了新的文献求助80
27秒前
情怀应助IAMXC采纳,获得10
28秒前
皮咻发布了新的文献求助10
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291