Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHH发布了新的文献求助10
1秒前
1秒前
1秒前
Lucas应助111采纳,获得10
1秒前
顾矜应助夹心贝采纳,获得10
2秒前
覃qqqq完成签到,获得积分10
2秒前
太叔文博完成签到,获得积分10
2秒前
2秒前
3秒前
CodeCraft应助coolkid采纳,获得10
4秒前
4秒前
辛雨凡发布了新的文献求助10
5秒前
anthony发布了新的文献求助10
5秒前
彭于晏应助romio采纳,获得10
6秒前
无花果应助迷你的囧采纳,获得10
6秒前
今后应助Function采纳,获得10
6秒前
LX完成签到,获得积分20
7秒前
科研通AI6应助11220采纳,获得10
7秒前
毛一杉发布了新的文献求助30
8秒前
8秒前
csz发布了新的文献求助10
9秒前
桐桐应助123采纳,获得10
9秒前
10秒前
桐桐应助辛雨凡采纳,获得30
10秒前
10秒前
偏偏海完成签到,获得积分10
10秒前
hui发布了新的文献求助10
11秒前
科研通AI6应助南岸采纳,获得10
12秒前
12秒前
yang驳回了wu应助
14秒前
贾靖涵发布了新的文献求助30
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
阿雷发布了新的文献求助10
16秒前
复杂长颈鹿完成签到,获得积分10
16秒前
小马甲应助romio采纳,获得10
16秒前
林暮雪完成签到,获得积分10
17秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675479
求助须知:如何正确求助?哪些是违规求助? 4947181
关于积分的说明 15153700
捐赠科研通 4834844
什么是DOI,文献DOI怎么找? 2589670
邀请新用户注册赠送积分活动 1543429
关于科研通互助平台的介绍 1501211