Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的水蜜桃完成签到,获得积分10
刚刚
Guo5082发布了新的文献求助10
刚刚
CipherSage应助TU采纳,获得10
刚刚
Tonsil01发布了新的文献求助30
刚刚
刚刚
MYC发布了新的文献求助10
1秒前
十九完成签到,获得积分10
1秒前
289600完成签到 ,获得积分10
1秒前
搞搞学术吧完成签到,获得积分10
1秒前
科研通AI2S应助机智妙菡采纳,获得10
1秒前
科目三应助Karry采纳,获得10
2秒前
Tao完成签到,获得积分10
2秒前
bkagyin应助xiaoyezi123采纳,获得10
2秒前
2秒前
Jasper应助朵朵采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
桐桐应助zuoyou采纳,获得10
4秒前
TU完成签到,获得积分10
5秒前
5秒前
hxxiii完成签到,获得积分10
6秒前
Lina发布了新的文献求助10
6秒前
甜美的瑾瑜完成签到,获得积分10
6秒前
后撤步7777发布了新的文献求助10
7秒前
7秒前
zzioo完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
Lee完成签到,获得积分10
11秒前
TU发布了新的文献求助10
12秒前
12秒前
无极微光应助俊俏的紫菜采纳,获得20
13秒前
朵朵发布了新的文献求助10
14秒前
14秒前
机智妙菡发布了新的文献求助10
14秒前
meimei完成签到,获得积分10
16秒前
HXY完成签到 ,获得积分10
17秒前
豆腐干地方完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517933
求助须知:如何正确求助?哪些是违规求助? 4610628
关于积分的说明 14523410
捐赠科研通 4547836
什么是DOI,文献DOI怎么找? 2491942
邀请新用户注册赠送积分活动 1473443
关于科研通互助平台的介绍 1445288