亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hihi完成签到,获得积分10
2秒前
Innogen发布了新的文献求助10
25秒前
Innogen完成签到,获得积分10
34秒前
汉堡包应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Everything完成签到,获得积分10
1分钟前
3分钟前
3分钟前
3分钟前
Yikao完成签到 ,获得积分10
4分钟前
ZIJUNZHAO完成签到 ,获得积分10
4分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
总是很简单完成签到 ,获得积分10
5分钟前
Ykaor完成签到 ,获得积分10
5分钟前
古铜完成签到 ,获得积分10
5分钟前
5分钟前
乐正文涛发布了新的文献求助10
5分钟前
ajing完成签到,获得积分10
6分钟前
QYQ完成签到 ,获得积分10
6分钟前
msk完成签到 ,获得积分10
6分钟前
乐正怡完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
FMHChan完成签到,获得积分10
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
wodetaiyangLLL完成签到 ,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
9分钟前
铭铭完成签到 ,获得积分10
9分钟前
FashionBoy应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
Attaa完成签到,获得积分10
12分钟前
12分钟前
木木发布了新的文献求助10
12分钟前
13分钟前
13分钟前
gexzygg应助科研通管家采纳,获得10
13分钟前
gexzygg应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557