已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lung‐CRNet: A convolutional recurrent neural network for lung 4DCT image registration

人工智能 计算机科学 图像配准 卷积神经网络 深度学习 计算机视觉 模式识别(心理学) 图像(数学)
作者
Jiayi Lu,Renchao Jin,Enmin Song,Guangzhi Ma,Manyang Wang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7900-7912 被引量:17
标识
DOI:10.1002/mp.15324
摘要

Deformable image registration (DIR) of lung four-dimensional computed tomography (4DCT) plays a vital role in a wide range of clinical applications. Most of the existing deep learning-based lung 4DCT DIR methods focus on pairwise registration which aims to register two images with large deformation. However, the temporal continuities of deformation fields between phases are ignored. This paper proposes a fast and accurate deep learning-based lung 4DCT DIR approach that leverages the temporal component of 4DCT images.We present Lung-CRNet, an end-to-end convolutional recurrent registration neural network for lung 4DCT images and reformulate 4DCT DIR as a spatiotemporal sequence predicting problem in which the input is a sequence of three-dimensional computed tomography images from the inspiratory phase to the expiratory phase in a respiratory cycle. The first phase in the sequence is selected as the only reference image and the rest as moving images. Multiple convolutional gated recurrent units (ConvGRUs) are stacked to capture the temporal clues between images. The proposed network is trained in an unsupervised way using a spatial transformer layer. During inference, Lung-CRNet is able to yield the respective displacement field for each reference-moving image pair in the input sequence.We have trained the proposed network using a publicly available lung 4DCT dataset and evaluated performance on the widely used the DIR-Lab dataset. The mean and standard deviation of target registration error are 1.56 ± 1.05 mm on the DIR-Lab dataset. The computation time for each forward prediction is less than 1 s on average.The proposed Lung-CRNet is comparable to the existing state-of-the-art deep learning-based 4DCT DIR methods in both accuracy and speed. Additionally, the architecture of Lung-CRNet can be generalized to suit other groupwise registration tasks which align multiple images simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝安卉完成签到,获得积分20
刚刚
大个应助远方采纳,获得10
1秒前
科研通AI6应助金云采纳,获得10
2秒前
3秒前
脑洞疼应助old幽露露采纳,获得10
3秒前
东风徐来发布了新的文献求助10
3秒前
Hello应助陶醉的羞花采纳,获得10
3秒前
Iris发布了新的文献求助10
3秒前
3秒前
4秒前
扇子么发布了新的文献求助350
4秒前
4秒前
热心萤发布了新的文献求助10
6秒前
peng发布了新的文献求助10
8秒前
希望天下0贩的0应助Iris采纳,获得10
10秒前
Lucas应助Mei采纳,获得10
11秒前
liu发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
14秒前
14秒前
wd发布了新的文献求助10
14秒前
lilei完成签到,获得积分10
15秒前
16秒前
无私的傲白完成签到,获得积分10
17秒前
涵雁发布了新的文献求助10
17秒前
ALITTLE发布了新的文献求助10
18秒前
小宇宙发布了新的文献求助10
18秒前
杪杪完成签到 ,获得积分10
19秒前
19秒前
20秒前
21秒前
大海发布了新的文献求助10
22秒前
@_@发布了新的文献求助10
23秒前
jungle完成签到 ,获得积分10
24秒前
爱笑香岚完成签到,获得积分10
25秒前
Mei发布了新的文献求助10
26秒前
Xiao李发布了新的文献求助10
27秒前
在水一方应助潘健康采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554435
求助须知:如何正确求助?哪些是违规求助? 4639073
关于积分的说明 14654962
捐赠科研通 4580813
什么是DOI,文献DOI怎么找? 2512474
邀请新用户注册赠送积分活动 1487263
关于科研通互助平台的介绍 1458165