电容去离子
材料科学
海水淡化
立方体(代数)
化学工程
氢氧化物
钴
期限(时间)
电容感应
膜
电气工程
冶金
化学
物理
工程类
组合数学
量子力学
生物化学
数学
作者
Yuecheng Xiong,Fei Yu,Stefanie Arnold,Lei Wang,Volker Presser,Yifan Ren,Jie Ma
出处
期刊:Research
[AAAS00]
日期:2021-01-01
卷期号:2021
被引量:14
标识
DOI:10.34133/2021/9754145
摘要
Faradaic electrode materials have significantly improved the performance of membrane capacitive deionization, which offers an opportunity to produce freshwater from seawater or brackish water in an energy-efficient way. However, Faradaic materials hold the drawbacks of slow desalination rate due to the intrinsic low ion diffusion kinetics and inferior stability arising from the volume expansion during ion intercalation, impeding the engineering application of capacitive deionization. Herein, a pseudocapacitive material with hollow architecture was prepared via template-etching method, namely, cuboid cobalt hydroxide, with fast desalination rate (3.3 mg (NaCl)·g-1 (h-Co(OH)2)·min-1 at 100 mA·g-1) and outstanding stability (90% capacity retention after 100 cycles). The hollow structure enables swift ion transport inside the material and keeps the electrode intact by alleviating the stress induced from volume expansion during the ion capture process, which is corroborated well by in situ electrochemical dilatometry and finite element simulation. Additionally, benefiting from the elimination of unreacted bulk material and vertical cobalt hydroxide nanosheets on the exterior surface, the synthesized material provides a high desalination capacity (117 ± 6 mg (NaCl)·g-1 (h-Co(OH)2) at 30 mA·g-1). This work provides a new strategy, constructing microscale hollow faradic configuration, to further boost the desalination performance of Faradaic materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI