COVIDNet: An Automatic Architecture for COVID-19 Detection With Deep Learning From Chest X-Ray Images

判别式 计算机科学 残差神经网络 联营 背景(考古学) 人工智能 2019年冠状病毒病(COVID-19) 棱锥(几何) 深度学习 建筑 模式识别(心理学)
作者
Lang He,Prayag Tiwari,Rui Su,Xiuying Shi,Pekka Marttinen,Neeraj Kumar
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (13): 11376-11384
标识
DOI:10.1109/jiot.2021.3126471
摘要

Up to now, the coronavirus disease 2019 (COVID-19) has been sweeping across all over the world, which has affected individual’s lives in an overwhelming way. To fight efficiently against the COVID-19, radiography and radiology images are used by clinicians in hospitals. This article presents an integrated framework, named COVIDNet, for classifying COVID-19 patients and healthy controls. Specifically, ResNet (i.e., ResNet-18 and ResNet-50) is adopted as a backbone network to extract the discriminative features first. Second, the spatial pyramid pooling (SPP) layer is adopted to capture the middle-level features from the features of ResNet. To learn the high-level features, the NetVLAD layer is used to aggregate the features representation from middle-level features. The context gating (CG) mechanism is adopted to further learn the high-level features for predicting the COVID-19 patients or not. Finally, extensive experiments are conducted on the collected database, showing the excellent performance of the proposed integrated architecture, with the sensitivity up to 97% and specificity of 99.5% of the ResNet-18, and with the sensitivity up to 99% and specificity of 99.4% of the ResNet-50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白小白完成签到,获得积分10
刚刚
CipherSage应助汎影采纳,获得10
1秒前
2秒前
风趣雁山完成签到,获得积分10
4秒前
zzzzz发布了新的文献求助10
4秒前
6秒前
Shanshan发布了新的文献求助10
6秒前
7秒前
小白完成签到 ,获得积分10
7秒前
深见完成签到,获得积分10
8秒前
8秒前
无限的续完成签到 ,获得积分20
9秒前
Sunny完成签到,获得积分10
11秒前
11秒前
上官若男应助汎影采纳,获得10
11秒前
14秒前
大模型应助1989采纳,获得10
16秒前
17秒前
小杜发布了新的文献求助10
17秒前
顺毕发布了新的文献求助10
17秒前
333cu完成签到,获得积分10
18秒前
爱吃西瓜的海獭完成签到,获得积分20
18秒前
物质尽头完成签到 ,获得积分10
18秒前
18秒前
bkagyin应助汎影采纳,获得10
19秒前
独特惋清发布了新的文献求助10
19秒前
Gakay完成签到,获得积分10
20秒前
ding应助谦让的小姜采纳,获得10
22秒前
顾矜应助爱吃西瓜的海獭采纳,获得10
22秒前
枝桠发布了新的文献求助10
22秒前
老六完成签到 ,获得积分10
23秒前
小萌发布了新的文献求助10
25秒前
26秒前
Dandy完成签到,获得积分10
26秒前
zxvcbnm完成签到,获得积分10
27秒前
白桃乌龙完成签到,获得积分10
27秒前
斯文败类应助pingping采纳,获得10
27秒前
28秒前
走着走着就散了完成签到,获得积分20
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053