Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study

医学 乳腺癌 前瞻性队列研究 无线电技术 化疗 肿瘤科 介入放射学 阶段(地层学) 内科学 癌症 神经组阅片室 放射科 神经学 生物 精神科 古生物学
作者
Jionghui Gu,Tong Tong,Chang He,Min Xu,Xin Yang,Jie Tian,Tianan Jiang,Kun Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 2099-2109 被引量:85
标识
DOI:10.1007/s00330-021-08293-y
摘要

Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770–0.851) with an NPV of 83.3% (95% CI: 76.5–89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913–0.955) with a specificity of 90.5% (95% CI: 86.3–94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
思源应助旦丁洋采纳,获得10
3秒前
xmm完成签到,获得积分20
4秒前
CR7应助木星土橘猫采纳,获得20
5秒前
5秒前
6秒前
cccw发布了新的文献求助10
6秒前
6秒前
7秒前
科目三应助怡然小蚂蚁采纳,获得10
7秒前
超人不会飞关注了科研通微信公众号
8秒前
pluto应助XIaoLuzi采纳,获得10
8秒前
sherry发布了新的文献求助30
8秒前
rilin发布了新的文献求助10
8秒前
黑眼圈完成签到,获得积分10
9秒前
11秒前
鸭梨山大完成签到,获得积分10
11秒前
12秒前
xmm发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
15秒前
15秒前
tang完成签到 ,获得积分10
15秒前
15秒前
风中的飞扬完成签到,获得积分10
16秒前
LIM发布了新的文献求助10
17秒前
li完成签到,获得积分10
17秒前
tang发布了新的文献求助10
18秒前
wzx发布了新的文献求助10
19秒前
黑咖啡完成签到,获得积分10
19秒前
超帅蓝血发布了新的文献求助30
19秒前
zzz发布了新的文献求助10
21秒前
故意的自行车完成签到,获得积分20
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794