已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study

医学 乳腺癌 前瞻性队列研究 无线电技术 化疗 肿瘤科 介入放射学 阶段(地层学) 内科学 癌症 神经组阅片室 放射科 神经学 生物 精神科 古生物学
作者
Jionghui Gu,Tong Tong,Chang He,Min Xu,Xin Yang,Jie Tian,Tianan Jiang,Kun Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 2099-2109 被引量:118
标识
DOI:10.1007/s00330-021-08293-y
摘要

Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770–0.851) with an NPV of 83.3% (95% CI: 76.5–89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913–0.955) with a specificity of 90.5% (95% CI: 86.3–94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好谷蓝发布了新的文献求助10
刚刚
刚刚
可可钳发布了新的文献求助10
1秒前
lkwat完成签到 ,获得积分10
3秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
Tanya47应助科研通管家采纳,获得10
4秒前
romance发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
Tanya47应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Tanya47应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
风行域完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助友好谷蓝采纳,获得10
7秒前
西吴完成签到 ,获得积分10
7秒前
焰古完成签到 ,获得积分10
7秒前
无情的问枫完成签到 ,获得积分10
7秒前
涵涵涵hh完成签到 ,获得积分10
8秒前
lijunliang完成签到,获得积分10
9秒前
hh1106完成签到 ,获得积分20
9秒前
9秒前
minkeyantong完成签到 ,获得积分10
9秒前
9秒前
kkpzc完成签到 ,获得积分10
11秒前
粗犷的灵松完成签到,获得积分10
11秒前
无极微光应助开朗的lala采纳,获得20
11秒前
12秒前
yangjian完成签到,获得积分10
12秒前
洁净的小熊猫完成签到,获得积分10
12秒前
小方完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663937
求助须知:如何正确求助?哪些是违规求助? 4854696
关于积分的说明 15106497
捐赠科研通 4822285
什么是DOI,文献DOI怎么找? 2581341
邀请新用户注册赠送积分活动 1535521
关于科研通互助平台的介绍 1493759