亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study

医学 乳腺癌 前瞻性队列研究 无线电技术 化疗 肿瘤科 介入放射学 阶段(地层学) 内科学 癌症 神经组阅片室 放射科 神经学 生物 精神科 古生物学
作者
Jionghui Gu,Tong Tong,Chang He,Min Xu,Xin Yang,Jie Tian,Tianan Jiang,Kun Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 2099-2109 被引量:118
标识
DOI:10.1007/s00330-021-08293-y
摘要

Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770–0.851) with an NPV of 83.3% (95% CI: 76.5–89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913–0.955) with a specificity of 90.5% (95% CI: 86.3–94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
20秒前
zbzfp发布了新的文献求助10
24秒前
33秒前
34秒前
35秒前
香蕉觅云应助zbzfp采纳,获得10
35秒前
王加冕完成签到 ,获得积分10
47秒前
时尚丹寒完成签到 ,获得积分10
1分钟前
烂漫的芫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
迷途小书童完成签到,获得积分10
1分钟前
1分钟前
科目三应助Jello采纳,获得10
1分钟前
131949发布了新的文献求助10
1分钟前
脑洞疼应助131949采纳,获得10
2分钟前
lele完成签到 ,获得积分10
2分钟前
2分钟前
huayu发布了新的文献求助10
2分钟前
2分钟前
知性的剑身完成签到,获得积分10
2分钟前
2分钟前
2分钟前
学生信的大叔完成签到,获得积分10
2分钟前
云轰2857发布了新的文献求助10
2分钟前
进步面包笑哈哈应助huayu采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
哭泣朝雪发布了新的文献求助10
2分钟前
2分钟前
上官若男应助云轰2857采纳,获得10
2分钟前
吴子鹏发布了新的文献求助10
2分钟前
yeeming应助Chocolat_Chaud采纳,获得10
2分钟前
云轰2857完成签到,获得积分10
2分钟前
G13完成签到,获得积分20
2分钟前
田様应助吴子鹏采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509482
求助须知:如何正确求助?哪些是违规求助? 4604372
关于积分的说明 14489686
捐赠科研通 4539145
什么是DOI,文献DOI怎么找? 2487317
邀请新用户注册赠送积分活动 1469770
关于科研通互助平台的介绍 1442014