Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study

医学 乳腺癌 前瞻性队列研究 无线电技术 化疗 肿瘤科 介入放射学 阶段(地层学) 内科学 癌症 神经组阅片室 放射科 神经学 生物 精神科 古生物学
作者
Jionghui Gu,Tong Tong,Chang He,Min Xu,Xin Yang,Jie Tian,Tianan Jiang,Kun Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (3): 2099-2109 被引量:76
标识
DOI:10.1007/s00330-021-08293-y
摘要

Breast cancer (BC) is the most common cancer in women worldwide, and neoadjuvant chemotherapy (NAC) is considered the standard of treatment for most patients with BC. However, response rates to NAC vary among patients, which leads to delays in appropriate treatment and affects the prognosis for patients who ineffectively respond to NAC. This study aimed to investigate the feasibility of deep learning radiomics (DLR) in the prediction of NAC response at an early stage. In total, 168 patients with clinicopathologically confirmed BC were enrolled in this prospective study, from March 2016 to December 2020. All patients completed NAC treatment and underwent ultrasonography (US) at three time points (before NAC, after the second course, and after the fourth course). We developed two DLR models, DLR-2 and DLR-4, for predicting responses after the second and fourth courses of NAC. Furthermore, a novel deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response at different time points of NAC administration. In the validation cohort, DLR-2 achieved an AUC of 0.812 (95% CI: 0.770–0.851) with an NPV of 83.3% (95% CI: 76.5–89.6). DLR-4 achieved an AUC of 0.937 (95% CI: 0.913–0.955) with a specificity of 90.5% (95% CI: 86.3–94.2). Moreover, 19 of 21 non-response patients were successfully identified by DLRP, suggesting that they could benefit from treatment strategy adjustment at an early stage of NAC. The proposed DLRP strategy holds promise for effectively predicting NAC response at its early stage for BC patients. • We proposed two novel deep learning radiomics (DLR) models to predict response to neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on US images at different NAC time points. • Combining two DLR models, a deep learning radiomics pipeline (DLRP) was proposed for stepwise prediction of response to NAC. • The DLRP may provide BC patients and physicians with an effective and feasible tool to predict response to NAC at an early stage and to determine further personalized treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到,获得积分10
2秒前
明亮泽洋关注了科研通微信公众号
2秒前
3秒前
zz发布了新的文献求助10
3秒前
4秒前
超超发布了新的文献求助10
5秒前
聪仔应助Xincheng采纳,获得10
6秒前
weing完成签到,获得积分10
6秒前
6秒前
传奇3应助wyz采纳,获得30
6秒前
8秒前
AM应助wgm1104采纳,获得10
9秒前
9秒前
galeno完成签到,获得积分10
10秒前
坚强的易巧完成签到,获得积分10
10秒前
10秒前
完美世界应助洪焕良采纳,获得10
10秒前
77发布了新的文献求助10
10秒前
那些兔儿完成签到 ,获得积分10
12秒前
梅梅王完成签到,获得积分10
13秒前
zz完成签到,获得积分10
13秒前
CipherSage应助LIN采纳,获得10
13秒前
更深的蓝发布了新的文献求助10
13秒前
我爱科研完成签到,获得积分10
14秒前
cctv18应助晚心采纳,获得10
14秒前
人十完成签到,获得积分10
15秒前
cell0.05发布了新的文献求助30
15秒前
15秒前
Zheng完成签到 ,获得积分10
15秒前
丘比特应助科研小废物采纳,获得10
16秒前
17秒前
17秒前
azure发布了新的文献求助10
18秒前
乐乐应助wqx采纳,获得10
20秒前
在水一方应助戴先森采纳,获得10
22秒前
22秒前
yyy发布了新的文献求助10
22秒前
LZHWSND发布了新的文献求助10
22秒前
明亮泽洋发布了新的文献求助10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243931
求助须知:如何正确求助?哪些是违规求助? 2887823
关于积分的说明 8249972
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384595
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625907