清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

STA-GCN: Spatio-Temporal AU Graph Convolution Network for Facial Micro-expression Recognition

计算机科学 图形 卷积(计算机科学) 模式识别(心理学) 人工智能 面部表情 面部表情识别 面子(社会学概念) 相关性 特征(语言学) 面部识别系统 理论计算机科学 人工神经网络 数学 几何学 哲学 社会学 语言学 社会科学
作者
Xinhui Zhao,Huimin Ma,Rongquan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 80-91 被引量:10
标识
DOI:10.1007/978-3-030-88004-0_7
摘要

Facial micro-expression (FME) is a fast and subtle facial muscle movement that typically reflects person's real mental state. It is a huge challenge in the FME recognition task due to the low intensity and short duration. FME can be decomposed into a combination of facial muscle action units (AU), and analyzing the correlation between AUs is a solution for FME recognition. In this paper, we propose a framework called spatio-temporal AU graph convolutional network (STA-GCN) for FME recognition. Firstly, pre-divided AU-related regions are input into the 3D CNN, and inter-frame relations are encoded by inserting a Non-Local module for focusing on apex information. Moreover, to obtain the inter-AU dependencies, we construct separate graphs of their spatial relationships and activation probabilities. The relationship feature we obtain from the graph convolution network (GCN) are used to activate on the full-face features. Our proposed algorithm achieves state-of-the-art accuracy of 76.08% accuracy and F1-score of 70.96% on the CASME II dataset, which outperformance all baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marshall发布了新的文献求助10
3秒前
yaomax完成签到 ,获得积分10
5秒前
修fei完成签到 ,获得积分10
6秒前
ffff完成签到 ,获得积分10
24秒前
满意台灯完成签到,获得积分10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
1分钟前
阳光的丹雪完成签到,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
guan完成签到,获得积分10
2分钟前
xinjie发布了新的文献求助10
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
qiongqiong完成签到 ,获得积分10
2分钟前
jojoly应助xinjie采纳,获得10
2分钟前
jojoly应助xinjie采纳,获得10
2分钟前
丘比特应助曾经问雁采纳,获得10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
GMEd1son完成签到,获得积分10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
3分钟前
飞飞发布了新的文献求助10
3分钟前
sa完成签到 ,获得积分10
3分钟前
飞飞完成签到,获得积分10
3分钟前
xinjie发布了新的文献求助10
4分钟前
冉亦完成签到,获得积分10
4分钟前
GRATE完成签到 ,获得积分10
4分钟前
我有我风格完成签到 ,获得积分10
4分钟前
乔杰完成签到 ,获得积分10
4分钟前
华仔应助xinjie采纳,获得10
5分钟前
量子星尘发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789037
求助须知:如何正确求助?哪些是违规求助? 5714702
关于积分的说明 15474095
捐赠科研通 4916983
什么是DOI,文献DOI怎么找? 2646691
邀请新用户注册赠送积分活动 1594335
关于科研通互助平台的介绍 1548797