Distance Weight-Graph Attention Model-Based High-Resolution Remote Sensing Urban Functional Zone Identification

计算机科学 土地覆盖 比例(比率) 核(代数) 图形 地理 土地利用 模式识别(心理学) 遥感 数据挖掘 人工智能 地图学 数学 理论计算机科学 生态学 组合数学 生物
作者
Kui Zhang,Dongping Ming,Shigao Du,Lu Xu,Ling Xiao,Beichen Zeng,Xianwei Lv
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2021.3115972
摘要

The spatial arrangement of land-cover features constitutes different urban functional zone. With the same attributes of the urban functional zone, the land-cover features that make up the functional zone will have similar spatial distribution characteristics. Considering the importance of understanding spatial relationships between land-cover features, the up-bottom hierarchical decomposition and semantic understanding of functional zone are achieved. First, for object convolution neural network (OCNN)-based land cover classification, an equal-area dividing algorithm is proposed to automatically generate convolution kernel position. Second, to extract spatial relationship features of urban land covers, a novel distance weight-graph attention model (DW-GAM) is originally proposed for classifying urban functional zones by comparing the feature similarity of the land cover relationship graph. Third, considering the extreme difficulties in expressing the urban structure characteristic on a single scale, a recursive model that uses an urban road network of different levels to divide multiscale functional zones is built. Finally, taking the analysis of urban function allocation as the application objective, this article establishes a primary framework of the spatial pattern evaluation index. Experimental results conducted on a Google Earth image of Xi’an city show that the multiscale recursive model can accurately recognize urban functional zones by using the originally proposed DW-GAM. Then, based on the outcome of urban functional zone identification, the case study of urban function allocation analysis is innovatively conducted on the fine scale to give some suggestions on future urban planning, which is, hence, of great significance for urban function pattern analysis and urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
晶晶完成签到,获得积分10
1秒前
科研通AI6应助闾丘博超采纳,获得10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
MM11111发布了新的文献求助10
3秒前
spring发布了新的文献求助10
3秒前
草莓熊完成签到,获得积分10
4秒前
爆米花应助lihua采纳,获得10
4秒前
JamesPei应助lszhw采纳,获得10
4秒前
4秒前
策略完成签到,获得积分10
5秒前
无花果应助王婷采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得50
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
wop111应助科研通管家采纳,获得20
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Song完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269