Distance Weight-Graph Attention Model-Based High-Resolution Remote Sensing Urban Functional Zone Identification

计算机科学 土地覆盖 比例(比率) 核(代数) 图形 地理 土地利用 模式识别(心理学) 遥感 数据挖掘 人工智能 地图学 数学 理论计算机科学 生态学 组合数学 生物
作者
Kui Zhang,Dongping Ming,Shigao Du,Lu Xu,Ling Xiao,Beichen Zeng,Xianwei Lv
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2021.3115972
摘要

The spatial arrangement of land-cover features constitutes different urban functional zone. With the same attributes of the urban functional zone, the land-cover features that make up the functional zone will have similar spatial distribution characteristics. Considering the importance of understanding spatial relationships between land-cover features, the up-bottom hierarchical decomposition and semantic understanding of functional zone are achieved. First, for object convolution neural network (OCNN)-based land cover classification, an equal-area dividing algorithm is proposed to automatically generate convolution kernel position. Second, to extract spatial relationship features of urban land covers, a novel distance weight-graph attention model (DW-GAM) is originally proposed for classifying urban functional zones by comparing the feature similarity of the land cover relationship graph. Third, considering the extreme difficulties in expressing the urban structure characteristic on a single scale, a recursive model that uses an urban road network of different levels to divide multiscale functional zones is built. Finally, taking the analysis of urban function allocation as the application objective, this article establishes a primary framework of the spatial pattern evaluation index. Experimental results conducted on a Google Earth image of Xi’an city show that the multiscale recursive model can accurately recognize urban functional zones by using the originally proposed DW-GAM. Then, based on the outcome of urban functional zone identification, the case study of urban function allocation analysis is innovatively conducted on the fine scale to give some suggestions on future urban planning, which is, hence, of great significance for urban function pattern analysis and urban planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古药完成签到,获得积分10
1秒前
NexusExplorer应助权志龙采纳,获得10
1秒前
3秒前
勤恳的若翠完成签到,获得积分10
4秒前
4秒前
5秒前
有魅力荟发布了新的文献求助10
6秒前
6秒前
彭于晏应助wxl采纳,获得10
6秒前
FashionBoy应助爽o采纳,获得10
6秒前
田様应助喜东东采纳,获得10
7秒前
多情的续完成签到,获得积分10
7秒前
科研通AI2S应助999采纳,获得10
8秒前
KTaoL发布了新的文献求助10
9秒前
9秒前
11秒前
Orange应助WWW采纳,获得10
11秒前
12秒前
讴歌完成签到,获得积分10
12秒前
Ava应助动人的ccc采纳,获得10
12秒前
赘婿应助天线短路宝宝采纳,获得10
13秒前
大个应助可可杨采纳,获得10
13秒前
华仔应助xlz采纳,获得10
13秒前
脑洞疼应助逢投必中采纳,获得10
14秒前
15秒前
欢喜发卡发布了新的文献求助10
16秒前
haowu发布了新的文献求助10
17秒前
wxl完成签到,获得积分20
17秒前
18秒前
腼腆的洪纲完成签到,获得积分10
22秒前
动人的ccc发布了新的文献求助10
23秒前
24秒前
我是老大应助个性的帽子采纳,获得10
24秒前
25秒前
25秒前
26秒前
niuhulu_yue完成签到,获得积分10
27秒前
27秒前
29秒前
逢投必中发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919