亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models

操作化 机器学习 计算机科学 人工神经网络 离散选择 人工智能 旅游行为 弱势群体 测量数据收集 差别性影响 预测建模 计量经济学 工程类 统计 经济 数学 政治学 最高法院 认识论 运输工程 法学 经济增长 哲学
作者
Yunhan Zheng,Shenhao Wang,Jinhua Zhao
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:132: 103410-103410 被引量:15
标识
DOI:10.1016/j.trc.2021.103410
摘要

Although researchers increasingly adopt machine learning to model travel behavior, they predominantly focus on prediction accuracy, ignoring the ethical challenges embedded in machine learning algorithms. This study introduces an important missing dimension - computational fairness - to travel behavior analysis. It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of deep neural network (DNN) and discrete choice models (DCM). We first operationalize computational fairness by equality of opportunity, then differentiate between the bias inherent in data and the bias introduced by modeling. The models inheriting the inherent biases can risk perpetuating the existing inequality in the data structure, and the biases in modeling can further exacerbate it. We then demonstrate the prediction disparities in travel behavior modeling using the 2017 National Household Travel Survey (NHTS) and the 2018–2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM reveal consistent prediction disparities across multiple social groups: both over-predict the false negative rate of frequent driving for the ethnic minorities, the low-income and the disabled populations, and falsely predict a higher travel burden of the socially disadvantaged groups and the rural populations than reality. Comparing DNN with DCM, we find that DNN can outperform DCM in prediction disparities because of DNN’s smaller misspecification error. To mitigate prediction disparities, this study introduces an absolute correlation regularization method, which is evaluated with synthetic and real-world data. The results demonstrate the prevalence of prediction disparities in travel behavior modeling, and the disparities still persist regarding a variety of model specifics such as the number of DNN layers, batch size and weight initialization. Since these prediction disparities can exacerbate social inequity if prediction results without fairness adjustment are used for transportation policy making, we advocate for careful consideration of the fairness problem in travel behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
螃蟹One完成签到 ,获得积分10
2秒前
开心的瘦子完成签到,获得积分10
6秒前
7秒前
14秒前
oia完成签到,获得积分10
23秒前
Raju发布了新的文献求助30
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
嘻嘻哈哈应助科研通管家采纳,获得10
44秒前
嘻嘻哈哈应助科研通管家采纳,获得10
44秒前
雪白元风完成签到 ,获得积分10
49秒前
caca完成签到,获得积分0
50秒前
52秒前
54秒前
1分钟前
ESLG完成签到 ,获得积分10
1分钟前
1分钟前
爱科研的小凡完成签到,获得积分10
1分钟前
净净发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
TBI发布了新的文献求助10
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
妩媚的夏烟完成签到,获得积分10
2分钟前
QuIT完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418