Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models

操作化 机器学习 计算机科学 人工神经网络 离散选择 人工智能 旅游行为 弱势群体 测量数据收集 差别性影响 预测建模 计量经济学 工程类 统计 经济 数学 政治学 哲学 认识论 经济增长 法学 运输工程 最高法院
作者
Yunhan Zheng,Shenhao Wang,Jinhua Zhao
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:132: 103410-103410 被引量:15
标识
DOI:10.1016/j.trc.2021.103410
摘要

Although researchers increasingly adopt machine learning to model travel behavior, they predominantly focus on prediction accuracy, ignoring the ethical challenges embedded in machine learning algorithms. This study introduces an important missing dimension - computational fairness - to travel behavior analysis. It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of deep neural network (DNN) and discrete choice models (DCM). We first operationalize computational fairness by equality of opportunity, then differentiate between the bias inherent in data and the bias introduced by modeling. The models inheriting the inherent biases can risk perpetuating the existing inequality in the data structure, and the biases in modeling can further exacerbate it. We then demonstrate the prediction disparities in travel behavior modeling using the 2017 National Household Travel Survey (NHTS) and the 2018–2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM reveal consistent prediction disparities across multiple social groups: both over-predict the false negative rate of frequent driving for the ethnic minorities, the low-income and the disabled populations, and falsely predict a higher travel burden of the socially disadvantaged groups and the rural populations than reality. Comparing DNN with DCM, we find that DNN can outperform DCM in prediction disparities because of DNN’s smaller misspecification error. To mitigate prediction disparities, this study introduces an absolute correlation regularization method, which is evaluated with synthetic and real-world data. The results demonstrate the prevalence of prediction disparities in travel behavior modeling, and the disparities still persist regarding a variety of model specifics such as the number of DNN layers, batch size and weight initialization. Since these prediction disparities can exacerbate social inequity if prediction results without fairness adjustment are used for transportation policy making, we advocate for careful consideration of the fairness problem in travel behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理的又柔完成签到 ,获得积分10
刚刚
刚刚
fancysummer发布了新的文献求助10
刚刚
FashionBoy应助开放鹭洋采纳,获得10
刚刚
韩soso发布了新的文献求助10
1秒前
1秒前
听雨眠发布了新的文献求助10
1秒前
1秒前
科研小白完成签到,获得积分10
1秒前
福西西完成签到,获得积分10
1秒前
2秒前
菠萝酸酸发布了新的文献求助10
2秒前
我是老大应助xz采纳,获得10
2秒前
馅饼完成签到,获得积分10
2秒前
Zx_1993应助wan采纳,获得10
3秒前
脑洞疼应助wan采纳,获得10
3秒前
张瑶发布了新的文献求助10
3秒前
魏芷容完成签到,获得积分10
3秒前
香蕉觅云应助boltos采纳,获得10
3秒前
梅子酒完成签到,获得积分10
3秒前
3秒前
温暖的云发布了新的文献求助10
4秒前
愤怒的狗完成签到,获得积分10
4秒前
慕青应助温婉的易梦采纳,获得10
4秒前
阿艺完成签到,获得积分10
4秒前
5秒前
科目三应助啊实打实的采纳,获得10
5秒前
hetao发布了新的文献求助10
5秒前
FashionBoy应助NXK采纳,获得10
5秒前
5秒前
点点完成签到,获得积分20
5秒前
稳重惜灵发布了新的文献求助10
6秒前
科研通AI6应助递年采纳,获得10
6秒前
Lxx发布了新的文献求助10
6秒前
He完成签到,获得积分10
7秒前
7秒前
小铃铛完成签到,获得积分10
7秒前
佳思思完成签到,获得积分10
7秒前
虚拟的小珍完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671