Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models

操作化 机器学习 计算机科学 人工神经网络 离散选择 人工智能 旅游行为 弱势群体 测量数据收集 差别性影响 预测建模 计量经济学 工程类 统计 经济 数学 政治学 哲学 认识论 经济增长 法学 运输工程 最高法院
作者
Yunhan Zheng,Shenhao Wang,Jinhua Zhao
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:132: 103410-103410 被引量:15
标识
DOI:10.1016/j.trc.2021.103410
摘要

Although researchers increasingly adopt machine learning to model travel behavior, they predominantly focus on prediction accuracy, ignoring the ethical challenges embedded in machine learning algorithms. This study introduces an important missing dimension - computational fairness - to travel behavior analysis. It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of deep neural network (DNN) and discrete choice models (DCM). We first operationalize computational fairness by equality of opportunity, then differentiate between the bias inherent in data and the bias introduced by modeling. The models inheriting the inherent biases can risk perpetuating the existing inequality in the data structure, and the biases in modeling can further exacerbate it. We then demonstrate the prediction disparities in travel behavior modeling using the 2017 National Household Travel Survey (NHTS) and the 2018–2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM reveal consistent prediction disparities across multiple social groups: both over-predict the false negative rate of frequent driving for the ethnic minorities, the low-income and the disabled populations, and falsely predict a higher travel burden of the socially disadvantaged groups and the rural populations than reality. Comparing DNN with DCM, we find that DNN can outperform DCM in prediction disparities because of DNN’s smaller misspecification error. To mitigate prediction disparities, this study introduces an absolute correlation regularization method, which is evaluated with synthetic and real-world data. The results demonstrate the prevalence of prediction disparities in travel behavior modeling, and the disparities still persist regarding a variety of model specifics such as the number of DNN layers, batch size and weight initialization. Since these prediction disparities can exacerbate social inequity if prediction results without fairness adjustment are used for transportation policy making, we advocate for careful consideration of the fairness problem in travel behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小滕发布了新的文献求助10
刚刚
不学无术发布了新的文献求助10
1秒前
rayce发布了新的文献求助10
1秒前
2秒前
Archers完成签到 ,获得积分10
2秒前
微眠发布了新的文献求助10
3秒前
3秒前
打打应助琴琴iam采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助kento采纳,获得10
4秒前
史迪奇大王完成签到,获得积分10
4秒前
姣妹崽发布了新的文献求助30
4秒前
4秒前
Ameko809完成签到,获得积分10
5秒前
Lucas应助do采纳,获得10
5秒前
madmax发布了新的文献求助10
6秒前
小通通完成签到,获得积分10
6秒前
rayce完成签到,获得积分10
7秒前
小手冰凉发布了新的文献求助10
7秒前
7秒前
7秒前
Iwan发布了新的文献求助10
8秒前
8秒前
江夏清完成签到,获得积分10
8秒前
9秒前
乐乐应助姣妹崽采纳,获得10
9秒前
影子发布了新的文献求助10
10秒前
chensiyao完成签到,获得积分10
12秒前
12秒前
12秒前
x5kyi发布了新的文献求助10
12秒前
张珂发布了新的文献求助10
13秒前
13秒前
RuiBigHead发布了新的文献求助10
14秒前
慧灰huihui发布了新的文献求助10
14秒前
16秒前
zwj发布了新的文献求助30
16秒前
Eureka96发布了新的文献求助10
16秒前
可爱的函函应助do采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959091
求助须知:如何正确求助?哪些是违规求助? 3505434
关于积分的说明 11123675
捐赠科研通 3237077
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821