Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models

操作化 机器学习 计算机科学 人工神经网络 离散选择 人工智能 旅游行为 弱势群体 测量数据收集 差别性影响 预测建模 计量经济学 工程类 统计 经济 数学 政治学 哲学 认识论 经济增长 法学 运输工程 最高法院
作者
Yunhan Zheng,Shenhao Wang,Jinhua Zhao
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:132: 103410-103410 被引量:15
标识
DOI:10.1016/j.trc.2021.103410
摘要

Although researchers increasingly adopt machine learning to model travel behavior, they predominantly focus on prediction accuracy, ignoring the ethical challenges embedded in machine learning algorithms. This study introduces an important missing dimension - computational fairness - to travel behavior analysis. It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of deep neural network (DNN) and discrete choice models (DCM). We first operationalize computational fairness by equality of opportunity, then differentiate between the bias inherent in data and the bias introduced by modeling. The models inheriting the inherent biases can risk perpetuating the existing inequality in the data structure, and the biases in modeling can further exacerbate it. We then demonstrate the prediction disparities in travel behavior modeling using the 2017 National Household Travel Survey (NHTS) and the 2018–2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM reveal consistent prediction disparities across multiple social groups: both over-predict the false negative rate of frequent driving for the ethnic minorities, the low-income and the disabled populations, and falsely predict a higher travel burden of the socially disadvantaged groups and the rural populations than reality. Comparing DNN with DCM, we find that DNN can outperform DCM in prediction disparities because of DNN’s smaller misspecification error. To mitigate prediction disparities, this study introduces an absolute correlation regularization method, which is evaluated with synthetic and real-world data. The results demonstrate the prevalence of prediction disparities in travel behavior modeling, and the disparities still persist regarding a variety of model specifics such as the number of DNN layers, batch size and weight initialization. Since these prediction disparities can exacerbate social inequity if prediction results without fairness adjustment are used for transportation policy making, we advocate for careful consideration of the fairness problem in travel behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
超级安荷完成签到,获得积分10
1秒前
水上书发布了新的文献求助10
1秒前
梁帅哥完成签到,获得积分10
1秒前
小二郎应助张泡芙采纳,获得10
2秒前
小帆同学发布了新的文献求助10
2秒前
2秒前
2秒前
帅哥吴克完成签到,获得积分10
3秒前
尊敬的莹完成签到,获得积分10
3秒前
3秒前
wss发布了新的文献求助10
4秒前
所所应助1410采纳,获得10
5秒前
5秒前
5秒前
脑洞疼应助Kilig采纳,获得30
6秒前
DengJJJ完成签到,获得积分10
6秒前
苏苏发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
城东城西发布了新的文献求助10
7秒前
明眸发布了新的文献求助10
8秒前
帆蚌侠发布了新的文献求助10
8秒前
共享精神应助ZHT采纳,获得10
8秒前
英俊的铭应助Mia采纳,获得10
8秒前
yznfly应助ZYYZYY采纳,获得30
8秒前
Lucas应助吴威武采纳,获得100
8秒前
搜集达人应助申左一采纳,获得10
8秒前
李健应助Geass采纳,获得10
9秒前
小鲨鱼完成签到,获得积分10
9秒前
fan完成签到 ,获得积分10
9秒前
数字生命发布了新的文献求助10
9秒前
10秒前
10秒前
眯眯眼的老五完成签到,获得积分10
10秒前
mumu发布了新的文献求助10
11秒前
端庄书雁完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559