已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models

操作化 机器学习 计算机科学 人工神经网络 离散选择 人工智能 旅游行为 弱势群体 测量数据收集 差别性影响 预测建模 计量经济学 工程类 统计 经济 数学 政治学 最高法院 认识论 运输工程 法学 经济增长 哲学
作者
Yunhan Zheng,Shenhao Wang,Jinhua Zhao
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:132: 103410-103410 被引量:15
标识
DOI:10.1016/j.trc.2021.103410
摘要

Although researchers increasingly adopt machine learning to model travel behavior, they predominantly focus on prediction accuracy, ignoring the ethical challenges embedded in machine learning algorithms. This study introduces an important missing dimension - computational fairness - to travel behavior analysis. It highlights the accuracy-fairness tradeoff instead of the single dimensional focus on prediction accuracy in the contexts of deep neural network (DNN) and discrete choice models (DCM). We first operationalize computational fairness by equality of opportunity, then differentiate between the bias inherent in data and the bias introduced by modeling. The models inheriting the inherent biases can risk perpetuating the existing inequality in the data structure, and the biases in modeling can further exacerbate it. We then demonstrate the prediction disparities in travel behavior modeling using the 2017 National Household Travel Survey (NHTS) and the 2018–2019 My Daily Travel Survey in Chicago. Empirically, DNN and DCM reveal consistent prediction disparities across multiple social groups: both over-predict the false negative rate of frequent driving for the ethnic minorities, the low-income and the disabled populations, and falsely predict a higher travel burden of the socially disadvantaged groups and the rural populations than reality. Comparing DNN with DCM, we find that DNN can outperform DCM in prediction disparities because of DNN’s smaller misspecification error. To mitigate prediction disparities, this study introduces an absolute correlation regularization method, which is evaluated with synthetic and real-world data. The results demonstrate the prevalence of prediction disparities in travel behavior modeling, and the disparities still persist regarding a variety of model specifics such as the number of DNN layers, batch size and weight initialization. Since these prediction disparities can exacerbate social inequity if prediction results without fairness adjustment are used for transportation policy making, we advocate for careful consideration of the fairness problem in travel behavior modeling, and the use of bias mitigation algorithms for fair transport decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆包完成签到,获得积分20
1秒前
2秒前
今后应助小贝是乌龟采纳,获得10
3秒前
4秒前
缥缈傥发布了新的文献求助10
6秒前
www268完成签到 ,获得积分10
6秒前
小豆包发布了新的文献求助10
6秒前
1969250328发布了新的文献求助10
9秒前
Jae发布了新的文献求助10
9秒前
赎罪完成签到 ,获得积分10
10秒前
11秒前
哒哒哒完成签到 ,获得积分10
12秒前
黑巧的融化完成签到 ,获得积分10
13秒前
楠茸完成签到 ,获得积分10
14秒前
追三完成签到 ,获得积分10
14秒前
yema完成签到 ,获得积分10
15秒前
爆米花应助zai采纳,获得10
16秒前
llk完成签到 ,获得积分10
17秒前
懒羊羊完成签到 ,获得积分10
17秒前
何不食肉糜完成签到 ,获得积分10
19秒前
19秒前
茴香豆完成签到 ,获得积分10
19秒前
优雅冷霜完成签到 ,获得积分10
20秒前
卢敏明发布了新的文献求助10
20秒前
21秒前
oleskarabach完成签到,获得积分20
21秒前
24秒前
萝卜丁完成签到 ,获得积分0
25秒前
25秒前
Susan完成签到,获得积分10
26秒前
Woo_SH完成签到,获得积分10
30秒前
Ying完成签到,获得积分10
30秒前
31秒前
迟迟不吃吃完成签到 ,获得积分10
31秒前
善学以致用应助小豆包采纳,获得30
31秒前
32秒前
Woo_SH发布了新的文献求助10
33秒前
朴实山兰完成签到,获得积分20
33秒前
zai发布了新的文献求助10
35秒前
darkpigx完成签到,获得积分10
35秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463529
求助须知:如何正确求助?哪些是违规求助? 3056862
关于积分的说明 9054565
捐赠科研通 2746863
什么是DOI,文献DOI怎么找? 1507063
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695916