FixyFPGA: Efficient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access

计算机科学 卷积神经网络 现场可编程门阵列 操作数 计算 推论 硬件加速 专用集成电路 计算机硬件 人工智能 计算机工程 并行计算 算法
作者
Jian Meng,Shreyas Kolala Venkataramanaiah,Chuteng Zhou,Patrick Hansen,Paul N. Whatmough,Jae-sun Seo
标识
DOI:10.1109/fpl53798.2021.00010
摘要

Convolutional neural networks (CNNs) have become very popular in real-time computer vision systems. CNNs involve a large amount of computation and storage and typically demand a highly efficient computing platform. Researchers have explored a diverse range of software and hardware optimizations to accelerate CNN inference in recent years. The high power consumption of GPUs and the lack of flexibility with ASIC has promoted interest in FPGAs as a promising platform to efficiently accelerate these CNN inference tasks. Various FPGA-based CNN accelerators have been proposed to low precision weights and high-sparsity in various forms. However, most of the previous work requires off-chip DDR memory to store the parameters and expensive DSP blocks to perform the computation. In this work, we propose the FixyFPGA, a fully on-chip CNN inference accelerator that naturally supports high-sparsity and low-precision computation. In our design, the weights of the trained CNN network are hard-coded into hardware and used as fixed operand for the multiplication. Convolution is performed by streaming the input images to the compute engine in a fully-paralleled, fully-pipelined manner. We analyzed the performance of the proposed scheme with both image classification tasks and object detection tasks based on the low precision, sparse compact CNN models. Compared to prior works, our design achieved 2.34× higher GOPS on ImageNet classification and 3.82× higher frames per second on Pascal VOC object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
知性的觅露完成签到,获得积分10
1秒前
朱湋帆完成签到 ,获得积分10
1秒前
devil发布了新的文献求助10
2秒前
乐乐应助咸鱼一号采纳,获得10
3秒前
5秒前
youjiang完成签到,获得积分10
5秒前
devil完成签到,获得积分10
5秒前
6秒前
6秒前
舞拽拽完成签到 ,获得积分10
8秒前
sunaijia完成签到,获得积分0
8秒前
雪白雍发布了新的文献求助10
8秒前
XiangXu完成签到,获得积分10
9秒前
guajiguaji发布了新的文献求助10
9秒前
9秒前
CipherSage应助liuq采纳,获得10
9秒前
优美的冰巧完成签到 ,获得积分10
10秒前
11秒前
11秒前
汤圆发布了新的文献求助50
11秒前
TT发布了新的文献求助10
12秒前
舒适的天奇完成签到 ,获得积分10
12秒前
YOLO完成签到 ,获得积分10
13秒前
刘奶奶的牛奶完成签到,获得积分10
14秒前
lio发布了新的文献求助10
16秒前
17秒前
17秒前
凝子老师发布了新的文献求助10
18秒前
白瓜完成签到 ,获得积分10
18秒前
123完成签到,获得积分10
20秒前
20秒前
斯文钢笔完成签到 ,获得积分10
21秒前
Hh发布了新的文献求助10
22秒前
司马天寿发布了新的文献求助10
23秒前
上官若男应助lio采纳,获得10
23秒前
wsnice应助呼呼采纳,获得20
25秒前
科研通AI5应助善良的路灯采纳,获得10
25秒前
27秒前
司马天寿完成签到,获得积分20
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849