FixyFPGA: Efficient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access

计算机科学 卷积神经网络 现场可编程门阵列 操作数 计算 推论 硬件加速 专用集成电路 计算机硬件 人工智能 计算机工程 并行计算 算法
作者
Jian Meng,Shreyas Kolala Venkataramanaiah,Chuteng Zhou,Patrick Hansen,Paul N. Whatmough,Jae-sun Seo
标识
DOI:10.1109/fpl53798.2021.00010
摘要

Convolutional neural networks (CNNs) have become very popular in real-time computer vision systems. CNNs involve a large amount of computation and storage and typically demand a highly efficient computing platform. Researchers have explored a diverse range of software and hardware optimizations to accelerate CNN inference in recent years. The high power consumption of GPUs and the lack of flexibility with ASIC has promoted interest in FPGAs as a promising platform to efficiently accelerate these CNN inference tasks. Various FPGA-based CNN accelerators have been proposed to low precision weights and high-sparsity in various forms. However, most of the previous work requires off-chip DDR memory to store the parameters and expensive DSP blocks to perform the computation. In this work, we propose the FixyFPGA, a fully on-chip CNN inference accelerator that naturally supports high-sparsity and low-precision computation. In our design, the weights of the trained CNN network are hard-coded into hardware and used as fixed operand for the multiplication. Convolution is performed by streaming the input images to the compute engine in a fully-paralleled, fully-pipelined manner. We analyzed the performance of the proposed scheme with both image classification tasks and object detection tasks based on the low precision, sparse compact CNN models. Compared to prior works, our design achieved 2.34× higher GOPS on ImageNet classification and 3.82× higher frames per second on Pascal VOC object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤木完成签到 ,获得积分10
1秒前
專注完美近乎苛求完成签到,获得积分10
2秒前
顾矜应助希光光采纳,获得10
2秒前
Rainielove0215完成签到,获得积分0
3秒前
潇洒的茗茗完成签到 ,获得积分10
6秒前
CipherSage应助体贴的靖仇采纳,获得10
7秒前
小奕完成签到,获得积分10
8秒前
搜集达人应助Lyu采纳,获得10
8秒前
灬灬完成签到 ,获得积分10
9秒前
凡事发生必有利于我完成签到,获得积分10
11秒前
Jeo关闭了Jeo文献求助
12秒前
老泮完成签到,获得积分10
12秒前
13秒前
心里的种子完成签到 ,获得积分10
15秒前
华仔应助超级小蚂蚁采纳,获得10
15秒前
17秒前
dery发布了新的文献求助10
19秒前
21秒前
小事完成签到 ,获得积分10
22秒前
风筝鱼完成签到 ,获得积分10
22秒前
新奇发布了新的文献求助10
24秒前
peterlzb1234567完成签到,获得积分10
25秒前
庚朝年完成签到 ,获得积分10
27秒前
zjzjzj123完成签到 ,获得积分10
28秒前
30秒前
30秒前
大成子完成签到,获得积分10
32秒前
Jeo关闭了Jeo文献求助
32秒前
在水一方应助Tim采纳,获得10
33秒前
33秒前
希光光发布了新的文献求助10
35秒前
超级小蚂蚁完成签到,获得积分10
35秒前
善学以致用应助新奇采纳,获得10
36秒前
dui完成签到,获得积分10
36秒前
37秒前
pterionGao完成签到 ,获得积分10
38秒前
mjtsurgery完成签到,获得积分10
38秒前
38秒前
CYL完成签到 ,获得积分10
40秒前
杜兰特工队完成签到,获得积分10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139737
求助须知:如何正确求助?哪些是违规求助? 2790662
关于积分的说明 7796051
捐赠科研通 2447104
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176