FixyFPGA: Efficient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access

计算机科学 卷积神经网络 现场可编程门阵列 操作数 计算 推论 硬件加速 专用集成电路 计算机硬件 人工智能 计算机工程 并行计算 算法
作者
Jian Meng,Shreyas Kolala Venkataramanaiah,Chuteng Zhou,Patrick Hansen,Paul N. Whatmough,Jae-sun Seo
标识
DOI:10.1109/fpl53798.2021.00010
摘要

Convolutional neural networks (CNNs) have become very popular in real-time computer vision systems. CNNs involve a large amount of computation and storage and typically demand a highly efficient computing platform. Researchers have explored a diverse range of software and hardware optimizations to accelerate CNN inference in recent years. The high power consumption of GPUs and the lack of flexibility with ASIC has promoted interest in FPGAs as a promising platform to efficiently accelerate these CNN inference tasks. Various FPGA-based CNN accelerators have been proposed to low precision weights and high-sparsity in various forms. However, most of the previous work requires off-chip DDR memory to store the parameters and expensive DSP blocks to perform the computation. In this work, we propose the FixyFPGA, a fully on-chip CNN inference accelerator that naturally supports high-sparsity and low-precision computation. In our design, the weights of the trained CNN network are hard-coded into hardware and used as fixed operand for the multiplication. Convolution is performed by streaming the input images to the compute engine in a fully-paralleled, fully-pipelined manner. We analyzed the performance of the proposed scheme with both image classification tasks and object detection tasks based on the low precision, sparse compact CNN models. Compared to prior works, our design achieved 2.34× higher GOPS on ImageNet classification and 3.82× higher frames per second on Pascal VOC object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杭谷波关注了科研通微信公众号
刚刚
麻麻薯完成签到 ,获得积分10
2秒前
海正发布了新的文献求助10
3秒前
机智的万声完成签到,获得积分10
3秒前
4秒前
4秒前
CodeCraft应助昆明官渡酒店采纳,获得10
5秒前
木叶研完成签到,获得积分10
5秒前
大模型应助机智的万声采纳,获得10
7秒前
机灵的凉面完成签到,获得积分10
7秒前
ff发布了新的文献求助10
8秒前
wanci应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
dadadaxia发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
kyo发布了新的文献求助30
10秒前
帅气鹭洋完成签到,获得积分10
12秒前
12秒前
jssssssss发布了新的文献求助10
13秒前
13秒前
14秒前
现代的访曼应助涵涵涵采纳,获得10
14秒前
大Doctor陈发布了新的文献求助10
15秒前
15秒前
16秒前
海晏河清发布了新的文献求助10
16秒前
Yvette完成签到 ,获得积分10
17秒前
lilianan发布了新的文献求助10
17秒前
daisies应助303采纳,获得10
18秒前
隐形曼青应助ff采纳,获得10
19秒前
19秒前
sume24完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
乘风破浪完成签到 ,获得积分10
21秒前
田様应助初之采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844