Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:302: 117474-117474 被引量:142
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小乐发布了新的文献求助10
1秒前
ding应助ri_290采纳,获得10
1秒前
刘鑫完成签到,获得积分20
1秒前
graysonup发布了新的文献求助10
2秒前
阿眠Aaaaa完成签到,获得积分10
2秒前
xiesiyuuuer完成签到,获得积分10
3秒前
TY发布了新的文献求助10
3秒前
4秒前
俏皮的一德完成签到,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
CNS完成签到 ,获得积分10
5秒前
6秒前
哈罗发布了新的文献求助10
6秒前
ZDTT完成签到,获得积分10
6秒前
无情的烨霖完成签到,获得积分10
8秒前
DS发布了新的文献求助10
8秒前
天天发布了新的文献求助20
9秒前
浮游应助地理牛马采纳,获得10
9秒前
plain001发布了新的文献求助10
9秒前
认真的人完成签到,获得积分10
10秒前
Friday发布了新的文献求助20
10秒前
丫丫发布了新的文献求助10
11秒前
可爱寻芹完成签到,获得积分10
12秒前
随便发布了新的文献求助10
13秒前
NexusExplorer应助红色流星采纳,获得10
13秒前
13秒前
14秒前
TY完成签到,获得积分10
14秒前
Hong1978发布了新的文献求助10
15秒前
沉静的幼晴完成签到,获得积分10
15秒前
汉堡包应助蓝色的多崎作采纳,获得10
16秒前
李昊完成签到,获得积分10
16秒前
17秒前
Wind应助天天采纳,获得10
19秒前
Lucas应助天天采纳,获得10
19秒前
Lucas应助天天采纳,获得10
19秒前
颜1发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680157
求助须知:如何正确求助?哪些是违规求助? 4996720
关于积分的说明 15171995
捐赠科研通 4839973
什么是DOI,文献DOI怎么找? 2593795
邀请新用户注册赠送积分活动 1546757
关于科研通互助平台的介绍 1504791