Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:302: 117474-117474 被引量:142
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
lovehuahua发布了新的文献求助10
9秒前
we发布了新的文献求助10
10秒前
啦啦啦完成签到,获得积分10
10秒前
小星发布了新的文献求助30
10秒前
lucas发布了新的文献求助10
11秒前
科研通AI6应助菩提石头采纳,获得10
11秒前
zky完成签到,获得积分20
12秒前
奇趣糖发布了新的文献求助20
13秒前
陈哇塞完成签到,获得积分20
13秒前
彭茜关注了科研通微信公众号
14秒前
烟花应助we采纳,获得10
17秒前
整齐便当发布了新的文献求助10
18秒前
yyzhou应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得200
21秒前
顾矜应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
雨姐科研应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得30
22秒前
宅多点应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
yyzhou应助科研通管家采纳,获得10
22秒前
雨姐科研应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
boltos应助chenzhi采纳,获得10
22秒前
yyzhou应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助陈哇塞采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
ilihe应助科研通管家采纳,获得10
22秒前
华仔应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
Xulyun完成签到 ,获得积分10
25秒前
28秒前
Chiuchiu完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915