已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier BV]
卷期号:302: 117474-117474 被引量:102
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
5秒前
9秒前
11秒前
14秒前
zhao发布了新的文献求助10
14秒前
顾矜应助大佬们请帮助我采纳,获得10
14秒前
蔡翌文完成签到 ,获得积分10
19秒前
Angela完成签到,获得积分10
21秒前
科研通AI6应助怕黑康采纳,获得10
22秒前
阿俊1212完成签到,获得积分10
22秒前
JamesPei应助weske采纳,获得10
23秒前
樱桃猴子完成签到,获得积分10
28秒前
和谐的亦丝完成签到,获得积分10
30秒前
万能图书馆应助zhao采纳,获得10
31秒前
32秒前
serendipity完成签到 ,获得积分10
37秒前
38秒前
42秒前
毛毛弟完成签到 ,获得积分10
44秒前
45秒前
榨菜发布了新的文献求助50
46秒前
46秒前
47秒前
47秒前
解语花发布了新的文献求助30
49秒前
50秒前
司空豁应助992575采纳,获得10
50秒前
FFFFcom发布了新的文献求助10
52秒前
凌云客发布了新的文献求助10
53秒前
57秒前
YNHN完成签到 ,获得积分10
58秒前
自由的无色完成签到 ,获得积分10
58秒前
George完成签到,获得积分10
1分钟前
Jemma完成签到 ,获得积分10
1分钟前
FFFFcom完成签到,获得积分10
1分钟前
1分钟前
调皮的巧凡完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581335
求助须知:如何正确求助?哪些是违规求助? 3999305
关于积分的说明 12381079
捐赠科研通 3673936
什么是DOI,文献DOI怎么找? 2024799
邀请新用户注册赠送积分活动 1058580
科研通“疑难数据库(出版商)”最低求助积分说明 945306