Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier BV]
卷期号:302: 117474-117474 被引量:102
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的冰之完成签到,获得积分10
刚刚
刚刚
CipherSage应助大胆次位子采纳,获得10
刚刚
王达完成签到,获得积分10
1秒前
1秒前
啧啧啧发布了新的文献求助10
1秒前
科研通AI6应助hahasail采纳,获得10
1秒前
烟花应助YaoHui采纳,获得10
2秒前
2499297293完成签到,获得积分10
2秒前
3秒前
请叫我表情帝完成签到 ,获得积分10
3秒前
3秒前
3秒前
称心铭完成签到 ,获得积分10
3秒前
4秒前
Maxine完成签到 ,获得积分10
4秒前
4秒前
4秒前
李健应助迷路广缘采纳,获得10
4秒前
汉堡包应助寂寞的手机采纳,获得10
5秒前
开心的凝荷完成签到,获得积分20
6秒前
清水涧完成签到,获得积分10
6秒前
Adrian关注了科研通微信公众号
6秒前
long发布了新的文献求助10
7秒前
okko完成签到,获得积分10
7秒前
王耨发布了新的文献求助10
8秒前
李子潭应助2499297293采纳,获得20
8秒前
zzzyyyuuu发布了新的文献求助10
8秒前
8秒前
黎L完成签到,获得积分10
8秒前
上官若男应助假装有昵称采纳,获得10
9秒前
9秒前
每天发布了新的文献求助10
9秒前
情怀应助沉心静气搞学习采纳,获得10
10秒前
10秒前
11秒前
冷傲紫文发布了新的文献求助10
11秒前
11秒前
12秒前
Patata发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252221
求助须知:如何正确求助?哪些是违规求助? 4416056
关于积分的说明 13748433
捐赠科研通 4287883
什么是DOI,文献DOI怎么找? 2352691
邀请新用户注册赠送积分活动 1349487
关于科研通互助平台的介绍 1308960