Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Deliang Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:302: 117474-117474 被引量:52
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐亦瑶完成签到,获得积分10
刚刚
AHA完成签到,获得积分10
1秒前
执行正义完成签到,获得积分10
1秒前
微笑的鱼完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
满脑子是静香完成签到,获得积分10
5秒前
领导范儿应助荞麦小丸采纳,获得10
5秒前
自信白梦发布了新的文献求助10
5秒前
怠惰vs勤劳完成签到,获得积分10
6秒前
科研通AI2S应助美好翠梅采纳,获得10
6秒前
zhuooo发布了新的文献求助10
6秒前
8秒前
岐黄应助你拿你采纳,获得10
8秒前
嘴嘴完成签到,获得积分10
9秒前
10秒前
11秒前
在水一方应助优雅的迎彤采纳,获得10
12秒前
13秒前
13秒前
overThat发布了新的文献求助10
13秒前
糊涂的勒完成签到,获得积分10
13秒前
小灰灰完成签到,获得积分10
14秒前
14秒前
zzt发布了新的文献求助10
15秒前
微笑的鱼发布了新的文献求助20
15秒前
16秒前
18秒前
LEESO完成签到,获得积分10
18秒前
荞麦小丸发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
以nn发布了新的文献求助10
21秒前
21秒前
紫竹轩发布了新的文献求助10
22秒前
22秒前
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608