Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:302: 117474-117474 被引量:142
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猫咪完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
1秒前
zoerist应助优美的白开水采纳,获得10
2秒前
vivian发布了新的文献求助10
3秒前
滴滴完成签到 ,获得积分10
4秒前
sunchaoyue发布了新的文献求助10
5秒前
慕青应助冷艳的白竹采纳,获得10
5秒前
JamesPei应助Fiona采纳,获得10
5秒前
6秒前
在水一方应助sniffgo采纳,获得10
6秒前
NexusExplorer应助豪杰采纳,获得10
6秒前
6秒前
asdfzxcv应助kkk采纳,获得10
7秒前
taec122关注了科研通微信公众号
7秒前
7秒前
shanika完成签到,获得积分10
10秒前
10秒前
义气丹雪应助小伙子采纳,获得200
10秒前
hyPang完成签到,获得积分10
11秒前
Lynne发布了新的文献求助10
12秒前
12秒前
panpan发布了新的文献求助10
12秒前
qqq关闭了qqq文献求助
12秒前
每天发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
称心奇迹完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
18秒前
SciGPT应助10711采纳,获得10
18秒前
xwydx完成签到,获得积分10
19秒前
赘婿应助panpan采纳,获得10
19秒前
笨小孩完成签到,获得积分10
19秒前
19秒前
19秒前
每天完成签到,获得积分10
20秒前
20秒前
小豆包发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704348
求助须知:如何正确求助?哪些是违规求助? 5157375
关于积分的说明 15241967
捐赠科研通 4858456
什么是DOI,文献DOI怎么找? 2607177
邀请新用户注册赠送积分活动 1558228
关于科研通互助平台的介绍 1516038