Deep DIC: Deep learning-based digital image correlation for end-to-end displacement and strain measurement

数字图像相关 斑点图案 人工智能 变形(气象学) 流离失所(心理学) 深度学习 位移场 卷积神经网络 计算机科学 端到端原则 材料科学 结构工程 光学 工程类 物理 复合材料 有限元法 心理学 心理治疗师
作者
Ru Yang,Yang Li,Danielle Zeng,Ping Guo
出处
期刊:Journal of Materials Processing Technology [Elsevier BV]
卷期号:302: 117474-117474 被引量:102
标识
DOI:10.1016/j.jmatprotec.2021.117474
摘要

Digital image correlation (DIC) has become an industry standard to retrieve accurate displacement and strain measurement in tensile testing and other material characterization. Though traditional DIC offers a high precision estimation of deformation for general tensile testing cases, the prediction becomes unstable at large deformation or when the speckle patterns start to tear. In addition, traditional DIC requires a long computation time and often produces a low spatial resolution output affected by filtering and speckle pattern quality. To address these challenges, we propose a new deep learning-based DIC approach – Deep DIC, in which two convolutional neural networks, DisplacementNet and StrainNet, are designed to work together for end-to-end prediction of displacements and strains. DisplacementNet predicts the displacement field and adaptively tracks a region of interest. StrainNet predicts the strain field directly from the image input without relying on the displacement prediction, which significantly improves the strain prediction accuracy. A new dataset generation method is developed to synthesize a realistic and comprehensive dataset, including the generation of speckle patterns and the deformation of the speckle image with synthetic displacement fields. Though trained on synthetic datasets only, Deep DIC gives highly consistent and comparable predictions of displacement and strain with those obtained from commercial DIC software for real experiments, while it outperforms commercial software with very robust strain prediction even at large and localized deformation and varied pattern qualities. In addition, Deep DIC is capable of real-time prediction of deformation with a calculation time down to milliseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芯止谭轩完成签到,获得积分10
刚刚
黑色幽默完成签到 ,获得积分10
刚刚
丘比特应助LL采纳,获得10
刚刚
gecumk发布了新的文献求助10
3秒前
3秒前
甜美梦槐发布了新的文献求助10
3秒前
4秒前
星辰大海应助Tracer采纳,获得10
4秒前
逍遥完成签到,获得积分10
5秒前
Tristan完成签到 ,获得积分10
5秒前
丽平发布了新的文献求助10
6秒前
6秒前
7秒前
yeah18完成签到 ,获得积分10
8秒前
ciallo完成签到,获得积分10
9秒前
连渡完成签到,获得积分10
9秒前
9秒前
及时雨完成签到 ,获得积分10
10秒前
枪王阿绣完成签到 ,获得积分10
10秒前
yuyuyu完成签到,获得积分10
10秒前
gecumk完成签到,获得积分10
11秒前
悦耳亦云完成签到 ,获得积分10
12秒前
12秒前
12秒前
犹豫大侠发布了新的文献求助10
12秒前
tcmlida完成签到,获得积分10
12秒前
OMIT完成签到,获得积分10
12秒前
13秒前
13秒前
群青完成签到 ,获得积分10
16秒前
16秒前
易琚完成签到,获得积分10
16秒前
16秒前
西西发布了新的文献求助10
16秒前
八九完成签到 ,获得积分10
17秒前
朝暮完成签到 ,获得积分10
18秒前
Hello应助lsz采纳,获得10
18秒前
丘比特应助将妄采纳,获得10
19秒前
19秒前
Gavin啥也不会完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911110
求助须知:如何正确求助?哪些是违规求助? 4186617
关于积分的说明 13000608
捐赠科研通 3954386
什么是DOI,文献DOI怎么找? 2168285
邀请新用户注册赠送积分活动 1186699
关于科研通互助平台的介绍 1094037