过电位
电解质
丙烯腈
二甲氧基乙烷
无机化学
锂(药物)
电化学
镁
化学
化学工程
三氟甲磺酸
重量分析
多硫化物
法拉第效率
复合数
材料科学
有机化学
聚合物
复合材料
催化作用
共聚物
电极
物理化学
内分泌学
工程类
医学
作者
Pei‐Wen Wang,Kathrin Müller,Ulrich Starke,Liang Chen,Rainer Niewa,Michael R. Buchmeiser
标识
DOI:10.1016/j.jpowsour.2021.230604
摘要
Research on magnesium-sulfur (Mg–S) batteries has gained great attention due to the high theoretical gravimetric and volumetric energy densities (1700 Wh kg−1 and 3200 Wh L−1), as well as because of their economic, ecologic and safety advantages. In this study, we present room-temperature Mg–S batteries with a sulfurized poly(acrylonitrile) composite (SPAN) cathode and a Mg2+/Li+ hybrid electrolyte (magnesium trifluoromethanesulfonate, (CF3SO3)2Mg), lithium trifluoromethanesulfonate, MgCl2 and AlCl3 in 1,2-dimethoxyethane (DME)). These cells deliver high discharge capacities and energy densities of 1100 mAh gs−1 and 700 Wh kgs−1 at 1 C, respectively, with >99.9% Coulombic efficiency. Electrochemical and kinetic measurements as well as post-mortem analysis revealed that utilization of SPAN and a lithium salt in the electrolyte is crucial and beneficial for the prevention of the polysulfide shuttle. It also dramatically reduces the cell resistance and the overpotential via the formation of MgLiSx species. Concomitantly, this system supports the formation of a solid electrolyte interface (SEI) layer, which greatly improves the reaction kinetics of the Mg2+ ions and the cycle performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI