The Dietary Inflammatory Index and asthma burden in children: A latent class analysis

医学 哮喘 潜在类模型 逻辑回归 疾病负担 风险因素 横断面研究 疾病 肺功能 内科学 免疫学 病理 数学 统计
作者
Giovanna Cilluffo,Yueh‐Ying Han,Giuliana Ferrante,Marika Dello Russo,Fabio Lauria,Salvatore Fasola,Laura Montalbano,Velia Malizia,Erick Forno,Stefania La Grutta
出处
期刊:Pediatric Allergy and Immunology [Wiley]
卷期号:33 (1) 被引量:9
标识
DOI:10.1111/pai.13667
摘要

Unbalanced dietary intake has been increasingly recognized as an important modifiable risk factor for asthma. In this study, we assessed whether a pro-inflammatory diet is associated with higher asthma burden in three steps: (1) identification of asthma latent classes (LC) based on symptoms, indoor exposures, and pulmonary function; (2) identification of risk factors associated with LC membership; and (3) estimation of the probabilities of LC membership with variation in DII.A cross-sectional study on 415 children aged 5-14 years (266 with persistent asthma and 149 controls). LC analysis was performed in asthmatic children. The DII was calculated based on a semiquantitative food frequency questionnaire. Elastic net logistic regression was used to investigate whether increasing DII was associated with worse asthma burden.Two LCs were identified. Children in Class 1, "high burden," had higher symptom burden and worse lung function. Children in Class 2, "low burden," had lower symptom burden and less impaired lung function but were more subject to indoor exposures. DII was the only risk factor significantly associated with Class 1 membership. As the DII increased (from -4.0 to +4.0), the probability of Class 1 membership increased from 32% to 65% when compared with control group, whereas it increased from 41% to 72% when compared with Class 2.We identified two phenotypes of persistent asthma associated with different disease burden linked to indoor exposures. An increasing DII was associated with high-burden asthma, providing further evidence about the role of a pro-inflammatory diet in asthma morbidity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关耳完成签到 ,获得积分10
1秒前
香蕉觅云应助5656采纳,获得10
1秒前
元正发布了新的文献求助10
1秒前
befond发布了新的文献求助10
1秒前
巴豆醇完成签到 ,获得积分10
1秒前
2秒前
lizzy发布了新的文献求助10
2秒前
2秒前
3秒前
海螺姑娘完成签到,获得积分10
4秒前
4秒前
英姑应助风趣的天奇采纳,获得10
4秒前
momo关注了科研通微信公众号
5秒前
ding应助元正采纳,获得10
6秒前
不过尔尔发布了新的文献求助10
6秒前
迷失的悠悠完成签到,获得积分10
6秒前
水蔓菁发布了新的文献求助30
7秒前
蒋复天发布了新的文献求助10
7秒前
sunshine发布了新的文献求助10
8秒前
xxx完成签到,获得积分10
8秒前
kkkkki完成签到,获得积分10
8秒前
gan发布了新的文献求助10
9秒前
从容的念柏完成签到,获得积分10
9秒前
9秒前
Aaron完成签到 ,获得积分10
9秒前
10秒前
江流石不转完成签到 ,获得积分10
10秒前
在水一方应助lizzy采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
魔芋不爽完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
xiaotong发布了新的文献求助10
14秒前
Paradox完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049