The Dietary Inflammatory Index and asthma burden in children: A latent class analysis

医学 哮喘 潜在类模型 逻辑回归 疾病负担 风险因素 横断面研究 疾病 肺功能 内科学 免疫学 病理 数学 统计
作者
Giovanna Cilluffo,Yueh‐Ying Han,Giuliana Ferrante,Marika Dello Russo,Fabio Lauria,Salvatore Fasola,Laura Montalbano,Velia Malizia,Erick Forno,Stefania La Grutta
出处
期刊:Pediatric Allergy and Immunology [Wiley]
卷期号:33 (1) 被引量:9
标识
DOI:10.1111/pai.13667
摘要

Unbalanced dietary intake has been increasingly recognized as an important modifiable risk factor for asthma. In this study, we assessed whether a pro-inflammatory diet is associated with higher asthma burden in three steps: (1) identification of asthma latent classes (LC) based on symptoms, indoor exposures, and pulmonary function; (2) identification of risk factors associated with LC membership; and (3) estimation of the probabilities of LC membership with variation in DII.A cross-sectional study on 415 children aged 5-14 years (266 with persistent asthma and 149 controls). LC analysis was performed in asthmatic children. The DII was calculated based on a semiquantitative food frequency questionnaire. Elastic net logistic regression was used to investigate whether increasing DII was associated with worse asthma burden.Two LCs were identified. Children in Class 1, "high burden," had higher symptom burden and worse lung function. Children in Class 2, "low burden," had lower symptom burden and less impaired lung function but were more subject to indoor exposures. DII was the only risk factor significantly associated with Class 1 membership. As the DII increased (from -4.0 to +4.0), the probability of Class 1 membership increased from 32% to 65% when compared with control group, whereas it increased from 41% to 72% when compared with Class 2.We identified two phenotypes of persistent asthma associated with different disease burden linked to indoor exposures. An increasing DII was associated with high-burden asthma, providing further evidence about the role of a pro-inflammatory diet in asthma morbidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Grayball应助啊这啥啊这是采纳,获得10
1秒前
cf完成签到,获得积分10
1秒前
王一线完成签到,获得积分10
2秒前
2秒前
2秒前
栗子完成签到,获得积分10
2秒前
bkagyin应助格格星采纳,获得10
3秒前
Youdge完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
yyf发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
Mian发布了新的文献求助10
5秒前
完美世界应助张静静采纳,获得10
5秒前
wu完成签到,获得积分10
5秒前
朴素的书琴完成签到,获得积分10
6秒前
dai完成签到,获得积分10
6秒前
务实大船发布了新的文献求助10
6秒前
四夕水窖完成签到,获得积分10
7秒前
FashionBoy应助曾经的臻采纳,获得10
7秒前
白白发布了新的文献求助10
7秒前
打打应助sternen采纳,获得30
7秒前
111完成签到,获得积分10
7秒前
加减乘除发布了新的文献求助10
8秒前
小憩发布了新的文献求助10
8秒前
ASZXDW完成签到,获得积分10
8秒前
飞翔的小舟完成签到,获得积分20
8秒前
csa1007完成签到,获得积分10
8秒前
纷纷故事完成签到,获得积分10
9秒前
9秒前
哲999发布了新的文献求助10
9秒前
麦苳完成签到,获得积分10
9秒前
10秒前
汉堡包应助JIE采纳,获得10
10秒前
伏地魔完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740