The Dietary Inflammatory Index and asthma burden in children: A latent class analysis

医学 哮喘 潜在类模型 逻辑回归 疾病负担 风险因素 横断面研究 疾病 肺功能 内科学 免疫学 病理 数学 统计
作者
Giovanna Cilluffo,Yueh‐Ying Han,Giuliana Ferrante,Marika Dello Russo,Fabio Lauria,Salvatore Fasola,Laura Montalbano,Velia Malizia,Erick Forno,Stefania La Grutta
出处
期刊:Pediatric Allergy and Immunology [Wiley]
卷期号:33 (1) 被引量:9
标识
DOI:10.1111/pai.13667
摘要

Unbalanced dietary intake has been increasingly recognized as an important modifiable risk factor for asthma. In this study, we assessed whether a pro-inflammatory diet is associated with higher asthma burden in three steps: (1) identification of asthma latent classes (LC) based on symptoms, indoor exposures, and pulmonary function; (2) identification of risk factors associated with LC membership; and (3) estimation of the probabilities of LC membership with variation in DII.A cross-sectional study on 415 children aged 5-14 years (266 with persistent asthma and 149 controls). LC analysis was performed in asthmatic children. The DII was calculated based on a semiquantitative food frequency questionnaire. Elastic net logistic regression was used to investigate whether increasing DII was associated with worse asthma burden.Two LCs were identified. Children in Class 1, "high burden," had higher symptom burden and worse lung function. Children in Class 2, "low burden," had lower symptom burden and less impaired lung function but were more subject to indoor exposures. DII was the only risk factor significantly associated with Class 1 membership. As the DII increased (from -4.0 to +4.0), the probability of Class 1 membership increased from 32% to 65% when compared with control group, whereas it increased from 41% to 72% when compared with Class 2.We identified two phenotypes of persistent asthma associated with different disease burden linked to indoor exposures. An increasing DII was associated with high-burden asthma, providing further evidence about the role of a pro-inflammatory diet in asthma morbidity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野土豆完成签到 ,获得积分10
1秒前
chocoooooo3发布了新的文献求助20
2秒前
3秒前
铁光完成签到,获得积分20
4秒前
4秒前
爱笑飞飞发布了新的文献求助10
4秒前
7秒前
7秒前
7秒前
2389937250应助沐沐采纳,获得200
7秒前
陈伟霆发布了新的文献求助10
8秒前
dingz完成签到,获得积分0
11秒前
丢一池月光完成签到,获得积分10
11秒前
小张发布了新的文献求助10
13秒前
科研通AI2S应助卫卫采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
文静入学发布了新的文献求助10
16秒前
高兴的小虾米完成签到,获得积分10
17秒前
嗯嗯你说完成签到,获得积分10
18秒前
锦七完成签到,获得积分10
20秒前
CXSCXD完成签到,获得积分10
20秒前
优美从雪发布了新的文献求助10
20秒前
ww完成签到,获得积分10
21秒前
英俊的铭应助搞怪的外套采纳,获得10
23秒前
24秒前
远看寒山完成签到,获得积分10
25秒前
追寻平凡完成签到,获得积分20
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
29秒前
nihao完成签到,获得积分20
30秒前
烟花应助wuxunxun2015采纳,获得10
31秒前
卷子卷子发布了新的文献求助10
31秒前
32秒前
阿米完成签到 ,获得积分10
32秒前
干饭宝发布了新的文献求助10
36秒前
猜不猜不发布了新的文献求助10
37秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872