Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助sunshine采纳,获得10
刚刚
1秒前
ograss完成签到,获得积分10
2秒前
希望天下0贩的0应助倒影采纳,获得10
3秒前
大模型应助josy采纳,获得10
3秒前
4秒前
5秒前
leeshho完成签到,获得积分10
6秒前
7秒前
7秒前
灵巧代柔完成签到,获得积分10
8秒前
欢呼妙彤完成签到,获得积分10
8秒前
土豆完成签到 ,获得积分10
9秒前
魔音甜菜完成签到,获得积分10
9秒前
尊敬冰巧完成签到 ,获得积分10
9秒前
9秒前
10秒前
Jasper应助明天见采纳,获得10
10秒前
11秒前
俊逸沛菡发布了新的文献求助10
12秒前
12秒前
zwww完成签到,获得积分10
15秒前
16秒前
qcy72完成签到,获得积分10
17秒前
高兴曼寒发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
善学以致用应助YingXiong采纳,获得30
20秒前
22秒前
Cathy发布了新的文献求助10
22秒前
碇真嗣发布了新的文献求助10
23秒前
23秒前
缥缈的机器猫完成签到,获得积分10
23秒前
留胡子的丹彤完成签到,获得积分10
24秒前
天天快乐应助稳重的秋天采纳,获得10
25秒前
小徐医生完成签到,获得积分10
25秒前
77发布了新的文献求助10
26秒前
like完成签到,获得积分10
27秒前
wangke完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429