Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助尔信采纳,获得10
刚刚
刚刚
居居应助你好采纳,获得10
1秒前
天气完成签到,获得积分20
1秒前
······完成签到,获得积分10
2秒前
狂野可兰发布了新的文献求助10
2秒前
3秒前
温婉的乞完成签到 ,获得积分20
4秒前
哈哈发布了新的文献求助10
4秒前
周星星完成签到,获得积分10
5秒前
······发布了新的文献求助10
6秒前
单薄咖啡豆完成签到 ,获得积分10
6秒前
自觉的晓灵完成签到,获得积分10
8秒前
xz完成签到,获得积分10
8秒前
8秒前
9秒前
11秒前
11秒前
JamesPei应助高凯璇采纳,获得10
12秒前
郑万恶完成签到 ,获得积分10
12秒前
13秒前
13秒前
qq发布了新的文献求助10
14秒前
16秒前
17秒前
17秒前
1461644768完成签到,获得积分10
17秒前
mia218完成签到,获得积分20
18秒前
萧西完成签到,获得积分10
19秒前
顾矜应助单向度的人采纳,获得10
20秒前
科研通AI2S应助LiWH采纳,获得10
20秒前
机灵的勒发布了新的文献求助10
20秒前
21秒前
21秒前
mia218发布了新的文献求助10
21秒前
与琳发布了新的文献求助10
22秒前
22秒前
xiaofang完成签到,获得积分10
22秒前
22秒前
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170414
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935308
捐赠科研通 2481980
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608