已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier BV]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观小懒虫完成签到 ,获得积分10
1秒前
冷静的小虾米完成签到 ,获得积分10
2秒前
createup发布了新的文献求助10
3秒前
kyn完成签到 ,获得积分10
3秒前
6秒前
路越发布了新的文献求助10
9秒前
随心所欲完成签到 ,获得积分10
9秒前
xinxin发布了新的文献求助10
9秒前
可爱的函函应助我不ins你_采纳,获得10
10秒前
yayika完成签到 ,获得积分10
12秒前
好吃鱼完成签到 ,获得积分10
13秒前
hhhhhhhhhh完成签到 ,获得积分10
14秒前
GAOjiale完成签到 ,获得积分10
15秒前
加菲丰丰应助createup采纳,获得30
16秒前
佳佳完成签到 ,获得积分10
16秒前
聂聂关注了科研通微信公众号
18秒前
hulahula完成签到 ,获得积分10
23秒前
lhtyzcg完成签到,获得积分10
23秒前
呼啦呼啦完成签到 ,获得积分10
28秒前
希哩哩完成签到 ,获得积分10
29秒前
好久不见完成签到 ,获得积分10
30秒前
Hao完成签到 ,获得积分10
31秒前
31秒前
NexusExplorer应助Dore采纳,获得10
33秒前
Summer完成签到 ,获得积分10
34秒前
36秒前
鼠鼠完成签到 ,获得积分10
39秒前
40秒前
xiuxiu完成签到 ,获得积分10
41秒前
42秒前
baiyeok完成签到,获得积分10
43秒前
45秒前
zzzzzzhu发布了新的文献求助60
46秒前
ewmmel完成签到 ,获得积分10
47秒前
矮小的向雪完成签到 ,获得积分10
47秒前
121314wld发布了新的文献求助10
47秒前
火星上映易完成签到 ,获得积分10
48秒前
51秒前
51秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063278
求助须知:如何正确求助?哪些是违规求助? 4286906
关于积分的说明 13358091
捐赠科研通 4104893
什么是DOI,文献DOI怎么找? 2247712
邀请新用户注册赠送积分活动 1253234
关于科研通互助平台的介绍 1184279