已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野雅彤发布了新的文献求助10
1秒前
真不错完成签到,获得积分10
4秒前
思源应助DD采纳,获得10
6秒前
7秒前
7秒前
天天快乐应助好天气采纳,获得10
10秒前
14秒前
CipherSage应助科研通管家采纳,获得10
15秒前
无极微光应助科研通管家采纳,获得20
15秒前
归尘应助科研通管家采纳,获得30
15秒前
归尘应助科研通管家采纳,获得30
15秒前
归尘应助科研通管家采纳,获得30
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
15秒前
归尘应助科研通管家采纳,获得30
15秒前
16秒前
淳于惜雪完成签到 ,获得积分10
16秒前
16秒前
达布妞发布了新的文献求助10
17秒前
-17完成签到 ,获得积分10
17秒前
18秒前
小马甲应助直率孤风采纳,获得10
19秒前
领导范儿应助Rzozsye采纳,获得10
21秒前
chen完成签到,获得积分10
22秒前
ifly发布了新的文献求助10
22秒前
23秒前
CodeCraft应助agf采纳,获得10
24秒前
领导范儿应助ZBQ采纳,获得10
24秒前
充电宝应助火鸡味锅巴采纳,获得10
26秒前
April完成签到,获得积分10
26秒前
君兰发布了新的文献求助10
27秒前
在水一方应助misaka采纳,获得10
27秒前
研研研究不出完成签到 ,获得积分10
28秒前
Bin发布了新的文献求助10
28秒前
好天气发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279