亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahaha完成签到,获得积分10
2秒前
今后应助opp采纳,获得10
14秒前
xiying完成签到 ,获得积分10
21秒前
Dreamchaser完成签到,获得积分10
45秒前
qiu发布了新的文献求助10
46秒前
研友_850aeZ完成签到,获得积分0
55秒前
小超人完成签到 ,获得积分10
55秒前
大胆的自行车完成签到 ,获得积分10
1分钟前
hwjg发布了新的文献求助10
1分钟前
Murphy完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
2分钟前
sube完成签到 ,获得积分10
2分钟前
NI完成签到 ,获得积分10
2分钟前
桐桐应助ceeray23采纳,获得20
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Panini完成签到 ,获得积分10
2分钟前
2分钟前
圆润润呐发布了新的文献求助10
2分钟前
自信书文完成签到 ,获得积分10
2分钟前
orixero应助萌道采纳,获得10
2分钟前
甜美的沅完成签到 ,获得积分10
2分钟前
2分钟前
opp发布了新的文献求助10
3分钟前
顺心成仁完成签到 ,获得积分10
3分钟前
义气幼珊完成签到 ,获得积分10
3分钟前
耶椰耶完成签到 ,获得积分10
3分钟前
李健的小迷弟应助142857采纳,获得10
3分钟前
阳光大山完成签到 ,获得积分10
3分钟前
CodeCraft应助莱万特采纳,获得10
3分钟前
3分钟前
3分钟前
萌道发布了新的文献求助10
3分钟前
香蕉觅云应助wang采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558406
求助须知:如何正确求助?哪些是违规求助? 4643430
关于积分的说明 14670992
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808