Prediction of steam/water stratified flow characteristics in NPPs transients using SVM learning algorithm with combination of thermal-hydraulic model and new data mapping technique

支持向量机 热工水力学 计算机科学 算法 流量(数学) 热的 人工智能 数据挖掘 气象学 机械 传热 物理
作者
Khalil Moshkbar-Bakhshayesh,Mohsen Ghafari
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:166: 108699-108699 被引量:4
标识
DOI:10.1016/j.anucene.2021.108699
摘要

Abstract Steam/water stratified flow would occur in transient condition (e.g. LOCA) in light water Nuclear Power Plants (NPPs). Due to high gradient of flow characteristics at the interface of steam/water flow, the prediction of flow characteristics (e.g. temperature, pressure, velocity, and Turbulent Kinetic Energy (TKE)) requires further attention and special interfacial models. Also, accurate simulation of these mentioned characteristics needs fine spatial mesh and very small time steps based on Computational Fluid Dynamics (CFD) standard criteria. In order to reduce the computational cost, the combination of thermal–hydraulic modelling and soft computing is considered as a new strategy in this study. The steam/water stratified flow in a rectangular channel (case 3 of Lim et al test section) is examined as case study and calculated values of the characteristics by thermal–hydraulic model are fed as training/test data to the Support Vector Machine (SVM) learning algorithm. SVM in combination with the proposed data mapping technique which is a type of autocorrelation finding predicts the value of each characteristic at a specific position/ time using the value of that characteristic at previous time at that position and previous position. The results show that the proposed methodology is appropriate for prediction of steam/water flow characteristics. Velocity, temperature, and TKE are predicted with reasonable accuracy. The predicted pressure shows a trend similar to the values obtained from the thermal–hydraulic modelling. For precise prediction of parameters similar to the pressure, it seems deep learning in combination with the proposed data mapping technique and a kind of features selection technique are needed. This method is under development and will be reported as the subsequent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈格完成签到,获得积分10
2秒前
科研通AI6应助蓝天采纳,获得10
2秒前
小可发布了新的文献求助10
4秒前
梦露发布了新的文献求助10
4秒前
惔惔惔发布了新的文献求助10
4秒前
杜亚完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
十月完成签到 ,获得积分10
5秒前
8秒前
zjc1111完成签到,获得积分10
8秒前
9秒前
上官若男应助MCS采纳,获得10
9秒前
同频共振完成签到,获得积分10
10秒前
昭昭发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
脑洞疼应助David采纳,获得10
14秒前
同频共振发布了新的文献求助10
15秒前
haoq发布了新的文献求助10
15秒前
情怀应助惔惔惔采纳,获得10
15秒前
英俊的铭应助0808采纳,获得10
16秒前
16秒前
Charles发布了新的文献求助10
16秒前
沉静绿柳完成签到,获得积分10
16秒前
三方完成签到,获得积分10
17秒前
英吉利25发布了新的文献求助10
17秒前
念心发布了新的文献求助10
18秒前
18秒前
猪达峰完成签到,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
CipherSage应助怡然的飞珍采纳,获得10
21秒前
21秒前
Jere发布了新的文献求助20
21秒前
小姜向阳开应助猪达峰采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660366
求助须知:如何正确求助?哪些是违规求助? 4833486
关于积分的说明 15090434
捐赠科研通 4819032
什么是DOI,文献DOI怎么找? 2578985
邀请新用户注册赠送积分活动 1533542
关于科研通互助平台的介绍 1492262