Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107473-107473 被引量:28
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡仔发布了新的文献求助10
1秒前
1秒前
千寒发布了新的文献求助10
1秒前
1秒前
无花果应助zky采纳,获得10
1秒前
healer完成签到,获得积分10
2秒前
NexusExplorer应助咸鱼小锦鲤采纳,获得10
2秒前
2秒前
2秒前
Wu完成签到 ,获得积分10
3秒前
DAHove完成签到 ,获得积分10
3秒前
周周完成签到 ,获得积分10
3秒前
pengyang完成签到 ,获得积分10
3秒前
SciGPT应助wulalala采纳,获得10
3秒前
3秒前
4秒前
南庭完成签到,获得积分10
4秒前
5秒前
txfxx完成签到,获得积分10
5秒前
wymmie发布了新的文献求助10
5秒前
jj完成签到,获得积分10
6秒前
筏A完成签到,获得积分10
7秒前
魏俏红发布了新的文献求助10
7秒前
科研小白发布了新的文献求助10
7秒前
JMYISIJM完成签到,获得积分10
7秒前
相龙完成签到,获得积分10
8秒前
陈瑗关注了科研通微信公众号
8秒前
雨霁发布了新的文献求助20
8秒前
11完成签到,获得积分10
9秒前
precious发布了新的文献求助10
9秒前
wang发布了新的文献求助10
9秒前
内向的青荷完成签到,获得积分10
10秒前
sxiao18应助没有伞的青春采纳,获得10
11秒前
Lyuemei完成签到,获得积分10
11秒前
万能图书馆应助相龙采纳,获得10
11秒前
冷暖自知完成签到 ,获得积分10
12秒前
以乐完成签到 ,获得积分10
13秒前
豆豆发布了新的文献求助30
13秒前
jayus发布了新的文献求助10
13秒前
北音发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587