Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107473-107473 被引量:38
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助笑笑的妙松采纳,获得10
刚刚
yaoyinlin发布了新的文献求助30
刚刚
1秒前
xmuchem发布了新的文献求助10
1秒前
1秒前
水水完成签到,获得积分20
1秒前
2秒前
无聊的小懒虫完成签到,获得积分10
2秒前
3秒前
三馬发布了新的文献求助10
3秒前
3秒前
3秒前
keyanxiaobai完成签到 ,获得积分10
3秒前
吴乐盈完成签到,获得积分10
4秒前
劳恩特完成签到,获得积分10
5秒前
zmz发布了新的文献求助50
5秒前
5秒前
5秒前
傲骨完成签到 ,获得积分10
5秒前
优秀的鹭卓完成签到,获得积分20
5秒前
wwf完成签到,获得积分10
6秒前
6秒前
Stella应助群q采纳,获得10
6秒前
吗喽完成签到,获得积分10
6秒前
小麦完成签到,获得积分10
7秒前
普鲁卡因发布了新的文献求助10
7秒前
8秒前
8秒前
abc发布了新的文献求助10
8秒前
FashionBoy应助大力蚂蚁采纳,获得10
8秒前
Mic应助白白白采纳,获得10
9秒前
2936276825发布了新的文献求助10
9秒前
香菜味钠片完成签到,获得积分10
9秒前
得且完成签到,获得积分10
10秒前
10秒前
pipe完成签到,获得积分10
10秒前
10秒前
扶风完成签到,获得积分10
10秒前
禹无极完成签到,获得积分10
11秒前
NexusExplorer应助PDIF-CN2采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006