Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107473-107473 被引量:28
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研闲人完成签到,获得积分10
1秒前
内向秋寒发布了新的文献求助10
1秒前
1秒前
黑色兔子完成签到 ,获得积分10
1秒前
2秒前
四小时充足睡眠完成签到,获得积分10
3秒前
zhang0403完成签到,获得积分10
3秒前
欢喜的毛豆完成签到 ,获得积分10
4秒前
华仔应助Eddy采纳,获得10
4秒前
小王发布了新的文献求助10
4秒前
通~发布了新的文献求助10
5秒前
MES发布了新的文献求助10
5秒前
赘婿应助jennifercui采纳,获得10
5秒前
5秒前
6秒前
6秒前
Nifeng完成签到,获得积分10
6秒前
爱听歌的依秋完成签到,获得积分10
6秒前
ufuon发布了新的文献求助10
6秒前
追寻的山晴完成签到,获得积分10
7秒前
7秒前
汉堡包应助otaro采纳,获得10
7秒前
思源应助xfxx采纳,获得10
7秒前
7秒前
铁锤xy完成签到,获得积分10
8秒前
9秒前
9秒前
善学以致用应助qinqin采纳,获得10
10秒前
10秒前
想要礼物的艾斯米拉达完成签到,获得积分10
11秒前
内向秋寒完成签到,获得积分10
11秒前
Alicia完成签到 ,获得积分10
11秒前
12秒前
13秒前
简单的银耳汤完成签到,获得积分10
13秒前
wangbq完成签到 ,获得积分10
13秒前
Moonlight完成签到 ,获得积分10
13秒前
爱撒娇的冰安完成签到,获得积分20
14秒前
zhui发布了新的文献求助10
14秒前
pi完成签到 ,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794