Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:232: 107473-107473 被引量:38
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助lll采纳,获得20
2秒前
2秒前
Tine发布了新的文献求助10
3秒前
3秒前
Chelry发布了新的文献求助10
3秒前
你ya完成签到 ,获得积分10
3秒前
小丸子完成签到,获得积分10
3秒前
搜集达人应助YHT采纳,获得10
4秒前
5秒前
wanci应助小包包采纳,获得10
5秒前
5秒前
DADing发布了新的文献求助20
5秒前
四叶草发布了新的文献求助50
6秒前
无花果应助ppppp采纳,获得10
7秒前
7秒前
刘运丽发布了新的文献求助10
7秒前
DX发布了新的文献求助10
7秒前
7秒前
小余同学发布了新的文献求助10
7秒前
8秒前
俭朴的三德完成签到,获得积分10
8秒前
可爱的函函应助虾仁采纳,获得10
9秒前
10秒前
10秒前
雄图完成签到,获得积分10
10秒前
CAOHOU举报小夫同学求助涉嫌违规
11秒前
11秒前
11秒前
852应助哈哈哈哈采纳,获得10
11秒前
xc41992发布了新的文献求助10
11秒前
研究生发布了新的文献求助10
11秒前
思源应助ccc采纳,获得20
11秒前
和谐续发布了新的文献求助10
12秒前
研友_851KE8发布了新的文献求助10
12秒前
superbanggg发布了新的文献求助30
12秒前
DX完成签到,获得积分10
12秒前
Jasper应助boyue采纳,获得10
13秒前
yookia应助小光采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600