Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:232: 107473-107473 被引量:38
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甪用完成签到,获得积分10
刚刚
刚刚
zha完成签到,获得积分10
1秒前
1秒前
安详的惜梦完成签到 ,获得积分10
1秒前
Joyj99完成签到,获得积分10
1秒前
sleepingfish应助斑马采纳,获得20
2秒前
安详靖柏完成签到,获得积分10
2秒前
影流完成签到,获得积分10
2秒前
缥缈纲完成签到,获得积分10
4秒前
今天也要开心Y完成签到,获得积分10
4秒前
酷波er应助唐磊采纳,获得10
4秒前
甜美的夏之完成签到,获得积分10
4秒前
li完成签到,获得积分10
5秒前
彪壮的幻丝完成签到 ,获得积分10
5秒前
5秒前
tachang完成签到,获得积分10
5秒前
zhengke924完成签到,获得积分10
5秒前
laurina完成签到 ,获得积分10
5秒前
一只生物狗完成签到,获得积分10
6秒前
小马甲应助zhuzi采纳,获得10
6秒前
dou完成签到,获得积分20
6秒前
陶兜兜发布了新的文献求助10
6秒前
甜美的忻完成签到,获得积分10
7秒前
lynn221204完成签到,获得积分10
7秒前
7秒前
可爱的日记本完成签到 ,获得积分10
7秒前
7秒前
TAN完成签到,获得积分10
7秒前
7秒前
洛伊儿发布了新的文献求助10
8秒前
dz完成签到,获得积分10
9秒前
jjjjchou完成签到,获得积分10
10秒前
10秒前
Ha放狗小Pi完成签到,获得积分10
11秒前
11秒前
熊大大大熊完成签到 ,获得积分10
11秒前
11秒前
乐观银耳汤完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763