Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 语言学 医学 美学 哲学 心脏病学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:232: 107473-107473 被引量:38
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁若翠完成签到,获得积分10
刚刚
小蘑菇应助橙果果采纳,获得10
1秒前
带线一去不回完成签到,获得积分10
1秒前
陈和合完成签到,获得积分20
1秒前
小二郎应助yanbobuchou采纳,获得10
1秒前
大木头发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
syh5527029完成签到 ,获得积分10
2秒前
sctaaa发布了新的文献求助10
3秒前
3秒前
勤奋幻柏完成签到,获得积分10
3秒前
香蕉觅云应助汤柏钧采纳,获得10
3秒前
3秒前
廖明强完成签到,获得积分10
3秒前
ZCL完成签到,获得积分10
5秒前
5秒前
5秒前
隐形曼青应助自由的凛采纳,获得10
5秒前
虚心无颜给虚心无颜的求助进行了留言
6秒前
浮游应助wink采纳,获得10
6秒前
6秒前
7秒前
7秒前
wxx771510625完成签到 ,获得积分10
7秒前
ZCL发布了新的文献求助10
8秒前
freebird应助ergatoid采纳,获得10
9秒前
杨德帅发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
llllliu完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
zilan完成签到,获得积分20
10秒前
11秒前
11秒前
Hello应助宴究生采纳,获得10
11秒前
闻疏完成签到,获得积分10
11秒前
樱桃发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810