Robustifying Conditional Portfolio Decisions via Optimal Transport

文件夹 业务 计算机科学 财务
作者
Viet Anh Nguyen,Fan Zhang,Shanshan Wang,José Blanchet,Erick Delage,Yinyu Ye
出处
期刊:Operations Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/opre.2021.0243
摘要

We propose a data-driven portfolio selection model that integrates side information, conditional estimation, and robustness using the framework of distributionally robust optimization. Conditioning on the observed side information, the portfolio manager solves an allocation problem that minimizes the worst-case conditional risk-return tradeoff, subject to all possible perturbations of the covariate-return probability distribution in an optimal transport ambiguity set. Despite the nonlinearity of the objective function in the probability measure, we show that the distributionally robust portfolio allocation with a side information problem can be reformulated as a finite-dimensional optimization problem. If portfolio decisions are made based on either the mean-variance or the mean-conditional value-at-risk criterion, the reformulation can be further simplified to second-order or semidefinite cone programs. Empirical studies in the U.S. equity market demonstrate the advantage of our integrative framework against other benchmarks. Funding: The material in this paper is based on work supported by the Air Force Office of Scientific Research [Award FA9550-20-1-0397]. Additional support is gratefully acknowledged from the National Science Foundation [Grants 1915967, 1820942, and 1838676], the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2016-05208], and the China Merchant Bank. V. A. Nguyen gratefully acknowledges the generous support from the Chinese University of Hong Kong [Improvement on Competitiveness in Hiring New Faculties Funding Scheme] and the Chinese University of Hong Kong [Direct Grant 4055191]. S. Wang is partially supported by the National Natural Science Foundation of China [Grant 72371022]. Finally, this research was enabled in part by support provided by Compute Canada. Supplemental Material: The computer code and data that support the findings of this study and the online appendix are available within this article’s supplemental material at https://doi.org/10.1287/opre.2021.0243 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suibianba完成签到,获得积分10
1秒前
大佬发布了新的文献求助100
2秒前
2秒前
2秒前
3秒前
茄子完成签到,获得积分10
3秒前
4秒前
san完成签到,获得积分10
4秒前
asdfghjkl完成签到,获得积分10
4秒前
kkk发布了新的文献求助10
5秒前
6秒前
Ohoooo完成签到,获得积分10
7秒前
苏钰发布了新的文献求助10
7秒前
asaki发布了新的文献求助10
11秒前
科研通AI2S应助无限子轩采纳,获得10
11秒前
12秒前
苏钰完成签到,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
劲秉应助科研通管家采纳,获得30
14秒前
不配.应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得20
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
sissiarno应助玉衡采纳,获得30
15秒前
科研通AI2S应助言叶采纳,获得10
16秒前
领导范儿应助丰富的宛菡采纳,获得10
16秒前
等待的盼波完成签到,获得积分10
16秒前
冻梨完成签到,获得积分20
17秒前
无花果应助asww采纳,获得10
17秒前
20秒前
Hello应助ywindm采纳,获得10
22秒前
22秒前
沉默的灵枫完成签到,获得积分10
23秒前
朱灭龙完成签到,获得积分10
24秒前
25秒前
26秒前
听说你还在搞什么原创完成签到 ,获得积分10
26秒前
27秒前
神华发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391511
求助须知:如何正确求助?哪些是违规求助? 3002625
关于积分的说明 8804775
捐赠科研通 2689201
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674184