Temperature prediction of heat sources using machine learning techniques

多物理 支持向量机 Python(编程语言) 传热 人工神经网络 机器学习 计算机科学 人工智能 算法 传热系数 热流密度 软件 机械工程 机械 工程类 热力学 物理 有限元法 程序设计语言 操作系统
作者
Shankar Durgam,Ajinkya Bhosale,Vivek Bhosale,Revati Deshpande,Pankaj Sutar,Subodh Kamble
出处
期刊:Heat Transfer - Japanese Research [Wiley]
卷期号:50 (8): 7817-7838 被引量:12
标识
DOI:10.1002/htj.22255
摘要

Abstract This paper explores the use of machine learning algorithms, such as XGBoost, random forest regression, support vector machine regression, and artificial neural network (ANN), which are employed for predicting temperatures of rectangular silicon heaters with dummy elements. A combination of these machine learning algorithms can predict better results over individual algorithm. Silicon heaters are equipped on an FR4 substrate board for cooling under forced convection in a horizontal channel. COMSOL Multiphysics 5.4 software is used for all the three‐dimensional numerical simulations. Heat transfer at the solid and fluid interface is studied using a module based on conjugate heat transfer and nonisothermal fluid flow. Dummy elements are coupled with heated sources to evaluate heat transfer and analyze the flow of fluid. The study is performed with 2.5 m/s velocity and a uniform heat flux of 5000 W/m 2 . The study is aimed at predicting and comparing results of support vector regression (SVR), ensemble learning with ANN to explore optimal configuration. Results indicate an agreement of less than 10% between the simulated and predicted temperatures. It is also found that SVR has given the best results compared with XG Boot and ANN when analyzed individually. The programming for these algorithms is performed using the Python programming language.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian完成签到,获得积分10
刚刚
共享精神应助果粒橙980采纳,获得10
刚刚
林屿发布了新的文献求助10
1秒前
聪明水之完成签到,获得积分10
1秒前
TTT0530完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
2秒前
4秒前
LYSM应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得30
4秒前
4秒前
木头马尾应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
jack应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得30
4秒前
量子星尘发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
5秒前
公西元柏发布了新的文献求助10
5秒前
冷艳元柏发布了新的文献求助10
5秒前
深情安青应助晴晴采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Q_Q完成签到,获得积分10
5秒前
高兴沛槐完成签到,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
jack应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
jack应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
打工牛牛应助科研通管家采纳,获得20
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798