Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助10
刚刚
听风发布了新的文献求助10
1秒前
xqn发布了新的文献求助10
1秒前
zt发布了新的文献求助10
1秒前
闫什发布了新的文献求助10
1秒前
1秒前
无极微光应助馋酒的小猫采纳,获得20
1秒前
orixero应助liyangyang0816采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
852应助lt采纳,获得10
4秒前
夕瑶摇啊完成签到,获得积分20
5秒前
5秒前
zh完成签到,获得积分10
5秒前
糊涂的小刺猬完成签到,获得积分10
5秒前
科研通AI6应助闫什采纳,获得10
5秒前
曲奇饼干完成签到 ,获得积分10
5秒前
龚昊发布了新的文献求助10
6秒前
白山茶完成签到,获得积分10
6秒前
朴素的扬发布了新的文献求助10
6秒前
18746005898发布了新的文献求助10
8秒前
顺心夜南应助guozizi采纳,获得30
8秒前
Metrix发布了新的文献求助10
8秒前
领导范儿应助wu采纳,获得10
8秒前
10秒前
曲奇饼干关注了科研通微信公众号
10秒前
Meng完成签到,获得积分10
11秒前
鲜橙完成签到 ,获得积分10
11秒前
蓝天应助Nov_snowr采纳,获得10
12秒前
12秒前
背后思卉应助yangsouth采纳,获得10
13秒前
13秒前
bkagyin应助xzy123456采纳,获得10
13秒前
舒服的鸽子完成签到,获得积分10
13秒前
14秒前
慧子完成签到,获得积分10
16秒前
niuniu完成签到 ,获得积分10
16秒前
BK发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354