Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MCS发布了新的文献求助10
刚刚
酷酷问雁完成签到,获得积分10
1秒前
研友_Zeg9BL完成签到,获得积分10
1秒前
wry完成签到,获得积分10
1秒前
1秒前
小杨发布了新的文献求助10
1秒前
qly发布了新的文献求助10
1秒前
wyj发布了新的文献求助10
2秒前
TWei发布了新的文献求助10
2秒前
坚定自信完成签到,获得积分10
2秒前
善学以致用应助Tiako采纳,获得10
4秒前
4秒前
江蓠完成签到,获得积分10
4秒前
4秒前
4秒前
xiaoyan发布了新的文献求助10
4秒前
大个应助随意采纳,获得10
4秒前
5秒前
Loneranger完成签到,获得积分20
5秒前
5秒前
5秒前
上官若男应助66采纳,获得10
6秒前
跳跃的襄完成签到,获得积分10
7秒前
7秒前
吱吱发布了新的文献求助10
7秒前
hao发布了新的文献求助10
8秒前
芝麻糊发布了新的文献求助10
8秒前
Akim应助Rjy采纳,获得10
9秒前
史超完成签到,获得积分10
9秒前
Adel发布了新的文献求助10
10秒前
栀盎完成签到 ,获得积分10
10秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
xhui1113完成签到 ,获得积分10
12秒前
12秒前
heolmes应助杰Sir采纳,获得10
12秒前
12秒前
Akim应助lxlcx采纳,获得10
12秒前
程宝贝完成签到 ,获得积分10
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443