Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
韩医生完成签到,获得积分10
2秒前
共享精神应助YOP采纳,获得10
2秒前
思源应助整齐枫叶采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
xiaozheng完成签到,获得积分10
4秒前
可爱的函函应助zzy采纳,获得10
4秒前
小小发布了新的文献求助10
5秒前
5秒前
虚拟的飞双完成签到 ,获得积分10
5秒前
wanci应助xu1227采纳,获得10
6秒前
MMZ发布了新的文献求助10
6秒前
慕青应助xu1227采纳,获得10
6秒前
ZiyuanLi完成签到 ,获得积分10
6秒前
7秒前
可爱的天曼完成签到,获得积分10
8秒前
脑洞疼应助OKYT采纳,获得10
8秒前
池海秀发布了新的文献求助10
10秒前
星灵发布了新的文献求助10
13秒前
13秒前
隐形曼青应助Edward采纳,获得10
13秒前
14秒前
16秒前
AYESHA发布了新的文献求助10
16秒前
斯文败类应助小鲤鱼本鱼采纳,获得10
16秒前
zzy完成签到,获得积分10
17秒前
小坤同学发布了新的文献求助10
17秒前
Trenblin发布了新的文献求助10
17秒前
群体医学的master完成签到,获得积分10
17秒前
F__完成签到 ,获得积分10
18秒前
赘婿应助liaoliao采纳,获得10
18秒前
20秒前
20秒前
简单山水发布了新的文献求助10
20秒前
夯巭完成签到 ,获得积分10
21秒前
22秒前
23秒前
可爱的函函应助小任性采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4980088
求助须知:如何正确求助?哪些是违规求助? 4232586
关于积分的说明 13184139
捐赠科研通 4023857
什么是DOI,文献DOI怎么找? 2201488
邀请新用户注册赠送积分活动 1213925
关于科研通互助平台的介绍 1130293