重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laohu完成签到,获得积分10
刚刚
1秒前
无极微光应助生动路人采纳,获得20
1秒前
xhao发布了新的文献求助10
3秒前
Small_L完成签到,获得积分10
3秒前
星星点灯完成签到,获得积分10
4秒前
小巧的寻双完成签到,获得积分10
6秒前
顶顶小明完成签到,获得积分10
6秒前
SciGPT应助六点一横采纳,获得10
8秒前
生动路人完成签到,获得积分10
11秒前
iidae完成签到,获得积分10
12秒前
13秒前
玛琪玛小姐的狗完成签到,获得积分10
14秒前
张颖完成签到,获得积分20
15秒前
杨zuoting完成签到,获得积分10
15秒前
新火新茶发布了新的文献求助10
16秒前
王哪跑12完成签到,获得积分10
18秒前
w020507完成签到,获得积分10
18秒前
大白完成签到,获得积分10
18秒前
dadadasds完成签到,获得积分20
19秒前
Wwyy完成签到,获得积分10
21秒前
七七七呀完成签到 ,获得积分10
21秒前
顺子快乐完成签到,获得积分10
22秒前
15805596177完成签到,获得积分20
22秒前
Mic应助张子烜采纳,获得10
22秒前
浮游应助大白采纳,获得10
23秒前
月光疾风完成签到,获得积分10
23秒前
浮游应助xia采纳,获得10
25秒前
阿关完成签到 ,获得积分10
27秒前
Orange应助柏佳怡采纳,获得10
27秒前
小洋芋完成签到,获得积分10
29秒前
所所应助传统的纸飞机采纳,获得10
30秒前
英俊的菲鹰完成签到,获得积分10
30秒前
拔刀斋完成签到,获得积分10
30秒前
STZHEN完成签到,获得积分10
32秒前
Linnnn完成签到,获得积分10
36秒前
迅速的以亦完成签到,获得积分10
38秒前
Elio完成签到,获得积分10
38秒前
十号信封完成签到,获得积分10
38秒前
栩漾完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465594
求助须知:如何正确求助?哪些是违规求助? 4569952
关于积分的说明 14321427
捐赠科研通 4496343
什么是DOI,文献DOI怎么找? 2463253
邀请新用户注册赠送积分活动 1452202
关于科研通互助平台的介绍 1427422