Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会科学 社会学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵凌完成签到,获得积分20
3秒前
高天完成签到,获得积分10
3秒前
fabian完成签到,获得积分10
3秒前
晚风完成签到,获得积分10
3秒前
包子牛奶完成签到,获得积分10
4秒前
安静的幻竹完成签到,获得积分10
5秒前
xixi发布了新的文献求助20
5秒前
7秒前
8秒前
8秒前
玉小赤完成签到,获得积分10
8秒前
Owen应助雾里青采纳,获得10
8秒前
无私的黄豆完成签到 ,获得积分10
9秒前
冰滋滋应助Khan采纳,获得10
9秒前
CodeCraft应助cx采纳,获得10
10秒前
无花果应助123456qi采纳,获得10
11秒前
蓝天发布了新的文献求助10
12秒前
受伤的擎宇完成签到,获得积分10
13秒前
研友_ZeqAxZ完成签到,获得积分0
13秒前
精明人达发布了新的文献求助10
13秒前
归尘应助monkey采纳,获得30
13秒前
Caden完成签到 ,获得积分10
13秒前
槿轩发布了新的文献求助10
13秒前
13秒前
Frequently2012完成签到 ,获得积分10
13秒前
慕青应助沉静素采纳,获得30
15秒前
yolo完成签到,获得积分10
15秒前
赘婿应助孙嘉畯采纳,获得10
16秒前
xili完成签到,获得积分10
16秒前
17秒前
jieni完成签到,获得积分10
18秒前
19秒前
Hazelwf发布了新的文献求助10
20秒前
豆豆突发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
cling完成签到,获得积分10
21秒前
23秒前
传奇3应助爱倩倩耶采纳,获得10
25秒前
内向绿海发布了新的文献求助10
25秒前
雾里青完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603709
求助须知:如何正确求助?哪些是违规求助? 4688692
关于积分的说明 14855500
捐赠科研通 4694733
什么是DOI,文献DOI怎么找? 2540943
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814