Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
文献快来完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI2S应助虤铠采纳,获得30
3秒前
Kirsten发布了新的文献求助10
3秒前
led灯泡发布了新的文献求助10
3秒前
星辰发布了新的文献求助10
3秒前
4秒前
五月好难发布了新的文献求助10
4秒前
EpQAQ完成签到,获得积分10
5秒前
5秒前
神勇难胜完成签到 ,获得积分10
5秒前
邱海华发布了新的文献求助10
5秒前
6秒前
mxr完成签到,获得积分10
6秒前
khh完成签到 ,获得积分10
7秒前
Akim应助vvA11采纳,获得10
7秒前
7秒前
7秒前
蓝天发布了新的文献求助10
9秒前
keyaner发布了新的文献求助10
9秒前
是谁还没睡完成签到 ,获得积分10
9秒前
9秒前
10秒前
科研通AI6应助yangyajie采纳,获得10
11秒前
丘比特应助lawrenceip0926采纳,获得10
11秒前
11秒前
KIKI完成签到,获得积分10
11秒前
fuchao发布了新的文献求助10
11秒前
khh关注了科研通微信公众号
11秒前
12秒前
李伟完成签到,获得积分10
12秒前
星辰完成签到,获得积分10
12秒前
sakyadamo发布了新的文献求助10
12秒前
科研通AI6应助上山的吗喽采纳,获得10
13秒前
悦耳的灵完成签到 ,获得积分10
13秒前
cheng发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901