Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宣以晴完成签到,获得积分10
1秒前
1秒前
FashionBoy应助严天飞采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
研友_R2D2发布了新的文献求助30
2秒前
Oops完成签到,获得积分10
4秒前
4秒前
耍酷巧蕊发布了新的文献求助10
5秒前
5秒前
6秒前
hhhhh完成签到,获得积分10
6秒前
雷家发布了新的文献求助10
6秒前
6秒前
在水一方应助cxxx采纳,获得10
7秒前
7秒前
8秒前
8秒前
虚拟的若完成签到,获得积分10
8秒前
香蕉觅云应助大气凝云采纳,获得10
9秒前
卡乐李发布了新的文献求助10
9秒前
9秒前
JJ发布了新的文献求助10
9秒前
上官若男应助朴素珩采纳,获得10
10秒前
11秒前
wwwww发布了新的文献求助10
11秒前
11秒前
千羽汐完成签到,获得积分20
11秒前
12秒前
两张发布了新的文献求助10
13秒前
严天飞发布了新的文献求助10
14秒前
tyj发布了新的文献求助10
14秒前
14秒前
ZZZkn发布了新的文献求助10
16秒前
lixiao1912完成签到,获得积分10
17秒前
17秒前
cc发布了新的文献求助10
18秒前
被风吹过的路完成签到,获得积分10
18秒前
科目三应助Dec采纳,获得10
18秒前
SciGPT应助李李采纳,获得10
19秒前
找文献呢发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721