已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会学 社会科学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助zw采纳,获得10
2秒前
Ray羽曦~完成签到 ,获得积分10
3秒前
吾日三省吾身完成签到 ,获得积分10
4秒前
zp完成签到,获得积分10
4秒前
SHD完成签到 ,获得积分10
5秒前
云落完成签到 ,获得积分10
5秒前
cc2713206完成签到,获得积分0
5秒前
5秒前
tangt糖糖完成签到,获得积分10
7秒前
Liu发布了新的文献求助150
7秒前
黑山小旋风完成签到,获得积分20
10秒前
11秒前
11秒前
vardy发布了新的文献求助10
12秒前
12秒前
jjdbqml完成签到,获得积分10
14秒前
无声发布了新的文献求助20
15秒前
张元东完成签到 ,获得积分10
15秒前
FashionBoy应助月初采纳,获得10
15秒前
研友_ngkyGn应助LLX采纳,获得10
15秒前
15秒前
沉默白猫完成签到 ,获得积分10
19秒前
19秒前
zw发布了新的文献求助10
20秒前
amber完成签到 ,获得积分10
21秒前
cxx完成签到 ,获得积分10
22秒前
dypdyp应助无声采纳,获得10
23秒前
李健的小迷弟应助wlxs采纳,获得10
23秒前
自然的亦巧完成签到,获得积分10
24秒前
Lily发布了新的文献求助20
24秒前
YR完成签到,获得积分10
25秒前
LIU完成签到 ,获得积分10
28秒前
zkkz完成签到,获得积分10
28秒前
30秒前
Akim应助nana采纳,获得10
32秒前
zw完成签到,获得积分10
34秒前
独立网卡1完成签到,获得积分20
34秒前
情怀应助caicai采纳,获得10
36秒前
blingbling发布了新的文献求助10
37秒前
KANE完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629