亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会科学 社会学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anders完成签到 ,获得积分10
16秒前
Ricardo完成签到 ,获得积分10
18秒前
战战兢兢的失眠完成签到 ,获得积分10
31秒前
35秒前
翻翻发布了新的文献求助10
39秒前
51秒前
53秒前
lyw发布了新的文献求助10
56秒前
58秒前
翻翻完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
潮鸣完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
巫马百招完成签到,获得积分10
1分钟前
lyw发布了新的文献求助10
1分钟前
wanci应助Fortune采纳,获得10
1分钟前
fossick2010完成签到 ,获得积分10
2分钟前
Penny完成签到,获得积分10
2分钟前
2分钟前
Penny发布了新的文献求助10
2分钟前
andrele发布了新的文献求助50
2分钟前
Fortune发布了新的文献求助10
2分钟前
颜安完成签到,获得积分20
2分钟前
张张完成签到 ,获得积分10
2分钟前
2分钟前
Fortune完成签到,获得积分10
3分钟前
Vincent发布了新的文献求助10
3分钟前
爆米花应助lzmcsp采纳,获得10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
Vincent完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507