Hierarchical autoencoder-based integration improves performance in multi-omics cancer survival models through soft modality selection

数据集成 模态(人机交互) 组学 计算机科学 自编码 模式 人工智能 机器学习 人工神经网络 特征选择 联营 选择(遗传算法) 数据挖掘 生物信息学 生物 社会科学 社会学
作者
David Wissel,Daniel Rowson,Valentina Boeva
标识
DOI:10.1101/2021.09.16.460589
摘要

Abstract With decreasing costs of high-throughput sequencing, more and more datasets providing omics profiles of cancer patients become available. Thus, novel survival analysis approaches integrating these differently sized and heterogeneous molecular and clinical groups of variables start being developed. Due to the difficulty of the task of multi-omics data integration, the Cox Proportional-Hazards (PH) model using clinical data has remained one of the best-performing techniques, barely outperformed by models using molecular data modalities. There is therefore a need for methods that can successfully perform multi-omics integration in survival analysis and outperform the clinical Cox PH model. Moreover, while certain deep learning methods have been shown to provide state-of-the-art accuracy of cancer survival prediction, most of them show no benefit or even decay in performance when integrating a larger number of modalities, further motivating a need to investigate how modality-specific representations should be integrated when using neural networks for multi-omics integration. We benchmarked multiple integration techniques for a neural network architecture, revealing that hierarchical autoencoder-based integration of modality-specific representations outperformed other methods such as max-pooling and was comparable with state-of-the-art statistical approaches for multi-omics integration. Further, we showed that the hierarchical autoencoder-based integration of modality-specific representations achieved increased performance through a soft modality selection mechanism, focusing on the most informative modalities for each cancer. We thus framed multiomics integration as a partial group-wise feature selection problem, highlighting that only those models performed well that could adequately weight important modalities in the presence of the high noise imposed by less important modalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助老迟到的书雁采纳,获得10
1秒前
orixero应助小二采纳,获得10
1秒前
2秒前
2秒前
simple完成签到,获得积分10
2秒前
caoyy发布了新的文献求助10
2秒前
赵小可可可可完成签到,获得积分10
4秒前
小萌发布了新的文献求助10
5秒前
weiv发布了新的文献求助10
5秒前
海科科发布了新的文献求助10
6秒前
陌上花完成签到,获得积分10
6秒前
我是站长才怪应助微笑襄采纳,获得10
7秒前
caoyy完成签到,获得积分10
8秒前
JamesPei应助独特亦旋采纳,获得10
9秒前
10秒前
10秒前
科目三应助Jenny采纳,获得50
12秒前
gry发布了新的文献求助10
13秒前
Hh发布了新的文献求助10
15秒前
Jzhang应助daniel采纳,获得10
15秒前
15秒前
夏夏发布了新的文献求助10
15秒前
jiesenya完成签到,获得积分10
17秒前
今后应助smile采纳,获得10
17秒前
万能图书馆应助wuzhizhiya采纳,获得10
18秒前
科研通AI5应助清新的静枫采纳,获得10
18秒前
applelpypies完成签到 ,获得积分10
18秒前
内向一笑完成签到 ,获得积分10
19秒前
ll完成签到,获得积分20
19秒前
19秒前
444完成签到,获得积分10
20秒前
gry完成签到,获得积分10
22秒前
22秒前
科研通AI5应助夏夏采纳,获得10
23秒前
LU完成签到 ,获得积分10
23秒前
zky0216发布了新的文献求助10
24秒前
Kin_L完成签到,获得积分10
24秒前
25秒前
一一发布了新的文献求助10
25秒前
丙队长发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824