ICLA Unit: Intra-Cluster Locality-Aware Unit to Reduce L2 Access and NoC Pressure in GPGPUs

计算机科学 隐藏物 地点 并行计算 库达 线程(计算) 延迟(音频) 计算机网络 操作系统 语言学 电信 哲学
作者
Siamak Biglari Ardabili,Gholamreza Zare Fatin
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:: 2250015-2250015
标识
DOI:10.1142/s0218126622500153
摘要

As the number of streaming multiprocessors (SMs) in GPUs increases, in order to gain better performance, the reply network faces heavy traffic. This causes congestion on Network-on-Chip (NoC) routers and memory controller’s (MC) buffers. By taking advantage of cooperative thread arrays (CTAs) that are scheduled locally in clusters, there is a high probability of finding the same copy of data in other SM’s [Formula: see text] cache in the same cluster. In order to make this feasible, it is necessary for the SMs to have access to local [Formula: see text] cache of the neighboring SMs. There is a considerable congestion in NoC due to unique traffic pattern called many-to-few-to-many. Thanks to the reduced number of requests that is attained by our proposed Intra-Cluster Locality-Aware (ICLA) unit, this congested replying network traffic becomes many-to-many traffic pattern and the replied data goes through the less-utilized core-to-core communication that mitigates the NoC traffic. The proposed architecture in this paper has been evaluated using 15 different workloads from CUDA SDK, Rodinia, and ISPASS2009 benchmarks. The proposed ICLA unit has been modeled and simulated in the GPGPU-Sim. The results show about 23.79% (up to 49.82%) reduction in average network latency, 15.49% (up to 36.82%) reduction in average [Formula: see text] cache access, and 18.18% (up to 58.1%) average improvement in the instruction per cycle (IPC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水电费黑科技给水电费黑科技的求助进行了留言
刚刚
二七发布了新的文献求助10
1秒前
戴U完成签到,获得积分10
1秒前
dahuihui完成签到,获得积分20
2秒前
3秒前
12138发布了新的文献求助10
4秒前
4秒前
不远完成签到,获得积分10
4秒前
vision0000完成签到,获得积分10
7秒前
dahuihui发布了新的文献求助30
8秒前
ceo66d发布了新的文献求助10
9秒前
13秒前
F_A完成签到,获得积分10
13秒前
zz发布了新的文献求助10
13秒前
14秒前
文艺的初南完成签到 ,获得积分10
14秒前
SCI_Dark工人完成签到,获得积分10
15秒前
15秒前
贺可乐完成签到,获得积分10
16秒前
ChouNic完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
怕孤单的熊猫完成签到,获得积分10
19秒前
孝顺的碧琴完成签到 ,获得积分10
19秒前
19秒前
19秒前
黑咖喱发布了新的文献求助10
19秒前
20秒前
21秒前
mm发布了新的文献求助10
21秒前
23秒前
微笑淡忘发布了新的文献求助10
23秒前
小文殊完成签到 ,获得积分10
23秒前
23秒前
24秒前
汤汤公主完成签到,获得积分10
25秒前
Micale发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760