3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 经济 财务
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴吴完成签到,获得积分10
1秒前
彤彤完成签到,获得积分10
1秒前
1秒前
Jasper应助uvofuofy采纳,获得10
1秒前
1秒前
1秒前
金鱼完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
未步完成签到,获得积分10
3秒前
无敌小汐发布了新的文献求助10
5秒前
5秒前
小张爱学习完成签到,获得积分20
5秒前
林新宇完成签到,获得积分10
5秒前
5秒前
王瑞发布了新的文献求助30
5秒前
科目三应助钱钱采纳,获得10
7秒前
枫叶发布了新的文献求助30
7秒前
SciGPT应助纯真夏之采纳,获得10
7秒前
杜宇翔发布了新的文献求助10
7秒前
未步发布了新的文献求助10
8秒前
8秒前
芒果草莓发布了新的文献求助10
8秒前
张新惠发布了新的文献求助10
8秒前
daizao完成签到,获得积分10
8秒前
吴吴发布了新的文献求助10
8秒前
个性南烟完成签到,获得积分10
8秒前
yuanyuan发布了新的文献求助10
8秒前
9秒前
Emilia完成签到,获得积分20
9秒前
10秒前
李健应助粒粒糖采纳,获得10
11秒前
11秒前
11秒前
mmm发布了新的文献求助10
12秒前
无敌小汐完成签到,获得积分10
12秒前
bwod完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352387
求助须知:如何正确求助?哪些是违规求助? 4485204
关于积分的说明 13962313
捐赠科研通 4385188
什么是DOI,文献DOI怎么找? 2409321
邀请新用户注册赠送积分活动 1401751
关于科研通互助平台的介绍 1375322