3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 财务 经济
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
醉月应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
36456657应助留胡子的妙松采纳,获得10
刚刚
llllll发布了新的文献求助10
刚刚
打打应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Jason发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得20
刚刚
刚刚
iNk应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得30
刚刚
Ben完成签到,获得积分10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
疯狂的虔完成签到,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
小蛇应助科研通管家采纳,获得10
1秒前
shu应助科研通管家采纳,获得10
1秒前
Krystal完成签到,获得积分10
1秒前
DDDD应助科研通管家采纳,获得150
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
AAA应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
局外人发布了新的文献求助10
2秒前
2秒前
abinoo发布了新的文献求助10
3秒前
chenhouhan发布了新的文献求助10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271