3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 财务 经济
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
嘿嘿应助小高采纳,获得10
5秒前
cc完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
Zoe完成签到,获得积分10
8秒前
舒苏应助ABCDE采纳,获得30
10秒前
11秒前
慧子完成签到,获得积分10
11秒前
小二郎应助家夜雪采纳,获得10
11秒前
shiiiny发布了新的文献求助10
11秒前
合适白猫完成签到,获得积分10
12秒前
BowieHuang应助元谷雪采纳,获得10
12秒前
薄荷完成签到,获得积分10
12秒前
13秒前
害怕的帽子完成签到 ,获得积分10
13秒前
14秒前
15秒前
寇博翔发布了新的文献求助10
16秒前
烂漫的飞松完成签到,获得积分10
16秒前
苹果冬莲完成签到,获得积分10
16秒前
去心邻域完成签到,获得积分10
17秒前
天地一体完成签到,获得积分10
20秒前
22秒前
梦玲完成签到 ,获得积分10
22秒前
小二郎应助可可奇采纳,获得10
25秒前
26秒前
慕青应助tguczf采纳,获得10
26秒前
27秒前
27秒前
NexusExplorer应助小高采纳,获得10
27秒前
张贵虎完成签到 ,获得积分10
28秒前
李兴完成签到 ,获得积分10
28秒前
29秒前
华仔应助11采纳,获得10
29秒前
研友_VZG7GZ应助竹寺采纳,获得10
29秒前
脑洞疼应助jetwang采纳,获得200
30秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867