3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 财务 经济
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yyj完成签到,获得积分10
1秒前
1秒前
max发布了新的文献求助10
1秒前
2秒前
砂糖完成签到,获得积分20
2秒前
斯文败类应助HCT采纳,获得10
2秒前
志小天发布了新的文献求助10
2秒前
2秒前
充电宝应助Utopia采纳,获得30
2秒前
Lucas应助黄油小花饼干采纳,获得30
3秒前
leslie发布了新的文献求助10
4秒前
Sun_Y完成签到,获得积分10
4秒前
NexusExplorer应助辛勤的映波采纳,获得10
4秒前
4秒前
BowieHuang应助LEEGAN采纳,获得10
4秒前
Lucas应助LEEGAN采纳,获得10
4秒前
砂糖发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
乖不如野发布了新的文献求助10
6秒前
伶俐碧萱完成签到 ,获得积分10
7秒前
青木瓜子完成签到 ,获得积分20
7秒前
7秒前
tree发布了新的文献求助10
8秒前
jiebai发布了新的文献求助10
8秒前
8秒前
hqy完成签到,获得积分10
8秒前
cocopan发布了新的文献求助10
9秒前
blenda发布了新的文献求助20
10秒前
万物可爱完成签到 ,获得积分10
11秒前
爆米花应助LHW采纳,获得10
11秒前
11秒前
嘻嘻哈哈完成签到 ,获得积分10
11秒前
不弱小妖完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809