3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 经济 财务
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zhq发布了新的文献求助10
1秒前
情怀应助Ayuyu采纳,获得10
3秒前
3秒前
YJ888发布了新的文献求助10
4秒前
王紫青完成签到,获得积分10
4秒前
672发布了新的文献求助10
5秒前
Agq完成签到,获得积分10
6秒前
彭于晏应助学术菜鸡123采纳,获得30
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
ding应助fei采纳,获得10
9秒前
落叶完成签到,获得积分10
10秒前
yydragen应助可爱无招采纳,获得50
11秒前
slx发布了新的文献求助10
12秒前
科研通AI2S应助机智的水风采纳,获得10
12秒前
叮当发布了新的文献求助10
12秒前
haha发布了新的文献求助50
14秒前
孙燕应助keyun采纳,获得10
15秒前
hjy完成签到 ,获得积分10
16秒前
CipherSage应助落叶采纳,获得10
19秒前
修辛发布了新的文献求助10
20秒前
21秒前
荣和完成签到,获得积分10
21秒前
21秒前
FashionBoy应助Lenacici采纳,获得10
22秒前
杜兰特发布了新的文献求助10
23秒前
搜集达人应助bx采纳,获得10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176