3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 财务 经济
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助涳域采纳,获得10
1秒前
暗中讨饭应助我爱科研采纳,获得10
1秒前
2秒前
2秒前
3秒前
23完成签到,获得积分10
3秒前
一只羊完成签到 ,获得积分10
3秒前
安静发布了新的文献求助10
4秒前
db完成签到,获得积分10
6秒前
6秒前
脑洞疼应助xsc采纳,获得10
6秒前
薯仔完成签到,获得积分10
7秒前
隐形曼青应助我爱科研采纳,获得10
7秒前
zhouyu发布了新的文献求助10
7秒前
7秒前
nneuuv88发布了新的文献求助10
7秒前
Yuanyuan发布了新的文献求助10
8秒前
10秒前
hui发布了新的文献求助10
10秒前
THEFAN发布了新的文献求助10
11秒前
11秒前
Orange应助优美紫槐采纳,获得10
11秒前
星辰大海应助学生采纳,获得10
12秒前
22发布了新的文献求助10
12秒前
hsa_ID发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
爬起来学习应助香蕉妙菡采纳,获得10
12秒前
13秒前
蓓蓓发布了新的文献求助10
15秒前
15秒前
16秒前
华仔应助弦瑜采纳,获得10
16秒前
我是老大应助JamesYang采纳,获得10
17秒前
隐形曼青应助小白采纳,获得10
17秒前
心如止水发布了新的文献求助10
17秒前
xsc发布了新的文献求助10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
快乐的厉发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420