3D Detection and Pose Estimation of Vehicle in Cooperative Vehicle Infrastructure System

目标检测 计算机科学 人工智能 计算机视觉 方向(向量空间) 职位(财务) 对象(语法) 聚类分析 单目视觉 单眼 车辆动力学 姿势 模式识别(心理学) 工程类 数学 汽车工程 几何学 财务 经济
作者
Ente Guo,Zhifeng Chen,Susanto Rahardja,Jingjing Yang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21759-21771 被引量:11
标识
DOI:10.1109/jsen.2021.3101497
摘要

Three-dimensional (3D) object detection is of great significance for avoiding collisions between vehicles and obstacles in autonomous driving. In particular, the recent 3D object detection methods based on supervised learning are widely studied to achieve excellent performance. However, the 3D labels for training in such methods are expensive and often difficult to be collected. To solve this issue, we propose a monocular 3D vehicle detection method. First, we propose a general mathematical K-means-like method for clustering arbitrary object contours into linear equations. Second, the position, orientation and dimensions of the vehicle can be estimated by applying K-means-like method without the need for 3D labels in the contour of the vehicle. Finally, given the 2D object detection, we maximize a posterior probability of vehicle position, orientation and dimensions to improve the accuracy of the 3D object detection based on the results of K-means-like method. We evaluate the proposed algorithm on the dataset collected by the vehicle-side and road-side cameras in the cooperative vehicle infrastructure system (CVIS). Compared with the state-of-art Deep3DBox and SMOKE methods, the evaluated results show that the detection accuracy of 3D object of our method is 1.4% higher than that of Deep3DBox in the vehicle-side system, while for the road-side camera, the proposed method has 3.86% and 4.37% higher accuracy than Deep3DBox and SMOKE, respectively. Thus, the proposed method can be seen as an effective 3D object detection method in the intelligent transportation system and CVIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cling关注了科研通微信公众号
1秒前
俏皮诺言发布了新的文献求助10
1秒前
TATA完成签到,获得积分20
1秒前
2秒前
情怀应助包容寻芹采纳,获得10
2秒前
ahoshuo完成签到,获得积分10
2秒前
3秒前
今后应助任我行采纳,获得10
3秒前
3秒前
古琴残梦发布了新的文献求助10
3秒前
Juid应助newsl采纳,获得40
4秒前
CodeCraft应助路不迷采纳,获得10
6秒前
海潮飞翔发布了新的文献求助10
6秒前
7秒前
7秒前
西海岸的风完成签到,获得积分10
7秒前
e麓绝尘完成签到 ,获得积分10
8秒前
小七完成签到 ,获得积分10
9秒前
幸运小狗完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
马老师发布了新的文献求助10
10秒前
硕shuo完成签到,获得积分10
11秒前
cqh完成签到 ,获得积分10
12秒前
共享精神应助俊逸的翅膀采纳,获得10
12秒前
13秒前
Tperm发布了新的文献求助20
13秒前
13秒前
13秒前
王晓茜发布了新的文献求助10
13秒前
14秒前
14秒前
刻苦的怀曼完成签到 ,获得积分10
15秒前
夏蓉完成签到,获得积分10
16秒前
howard发布了新的文献求助10
17秒前
情怀应助明亮的幻竹采纳,获得10
17秒前
17秒前
晓凡发布了新的文献求助10
18秒前
任我行发布了新的文献求助10
18秒前
潘广瑞完成签到,获得积分10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620667
求助须知:如何正确求助?哪些是违规求助? 4705247
关于积分的说明 14930934
捐赠科研通 4762530
什么是DOI,文献DOI怎么找? 2551078
邀请新用户注册赠送积分活动 1513735
关于科研通互助平台的介绍 1474655