胺气处理
纳米复合材料
三乙氧基硅烷
细菌纤维素
材料科学
化学工程
核化学
纤维素
高分子化学
极限抗拉强度
表面改性
化学
有机化学
复合材料
工程类
作者
Sepideh Hamedi,Seyed Abbas Shojaosadati
出处
期刊:Cellulose
[Springer Nature]
日期:2021-08-11
卷期号:28 (14): 9269-9282
被引量:30
标识
DOI:10.1007/s10570-021-04119-8
摘要
Nanocomposite hydrogel is helpful to provide a moist and ideal environment for wound healing. In this research study, a nanocomposite hydrogel was prepared based on schizophyllan (SPG) and amine-functionalized bacterial cellulose (amine-functionalized BC). ZnO-nanoparticles were loaded into amine-grafted BC/SPG hydrogel to improve its antibacterial feature. The successful functionalization of bacterial cellulose by (3-aminopropyl)triethoxysilane was verified by FTIR and XRD analyses. XRD pattern of amine-grafted BC/SPG/ZnO NP showed some new peaks in comparison with XRD pattern of amine-grafted BC/SPG which verified the intercalation of ZnO into polymeric matrix. SEM images showed that the porous spaces of BC have been filled by schizophyllan as a result of the intermolecular attraction between them. Deposition of ZnO nanoparticles on the surface of amine-grafted BC/SPG has also been verified by SEM analysis. Amine-grafted BC/SPG membrane showed the higher swelling degree (850 ± 48%) in comparison with BC (512 ± 29%). The swelling ratio decreased to 725 ± 19% by addition of ZnO nanoparticles. Amine-grafted BC/SPG exhibited the higher mechanical strength (45 MPa) in comparison with pristine BC (10 MPa). The tensile strength of amine-grafted BC/SPG/ZnO NP nanocomposite reached ~ 70 MPa that might be resulted from the formation of hydrogen bonding between hydroxyl groups of polymers and oxygen atoms in the ZnO NPs. Amine-grafted BC/SPG/ZnO showed a more remarkable antibacterial efficiency against E. coli and S. aureus. As compared to BC, amine-grafted BC/SPG could stimulate the proliferation of human fibroblast cell. Cell viability showed a slight decrease after exposure to amine-grafted BC/SPG/ZnO NP nanocomposite.
科研通智能强力驱动
Strongly Powered by AbleSci AI