Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

计算机科学 时间序列 平滑的 流量(计算机网络) 智能交通系统 期限(时间) 数据挖掘 人工智能 实时计算 机器学习 工程类 计算机视觉 土木工程 物理 计算机安全 量子力学
作者
Changxi Ma,Guowen Dai,Jibiao Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 5615-5624 被引量:214
标识
DOI:10.1109/tits.2021.3055258
摘要

The real-time performance and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance systems, and traffic flow prediction is a hotspot in the field of intelligent transportation. To further improve the accuracy of short-term traffic flow prediction, a short-term traffic flow prediction model based on traffic flow time series analysis, and an improved long short-term memory network (LSTM) is proposed. First, perform time series analysis on traffic flow data and perform smoothing and standardization processing to obtain a stable time series as model input data, which can improve the accuracy of model training and eliminate the impact of a wide range of feature values. Then, an improved LSTM model based on LSTM and bidirectional LSTM networks are established. Combining the advantages of sequential data and the long-term dependence of forwarding LSTM and reverse LSTM, the bidirectional long-term memory network (BILSTM) is integrated into the prediction model. The first layer of the LSTM network learns and predicts the input time series and further learns and trains through the bidirectional LSTM network to effectively overcome the large prediction errors. Finally, the performance of the proposed method is evaluated by comparing the predicted results with actual traffic data. The model that is proposed in this paper is compared with the long short-term memory network (LSTM) model and the bidirectional long-term memory network (BILSTM) model. The results demonstrate that the proposed method outperforms both compared methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Yi采纳,获得10
刚刚
晚风发布了新的文献求助10
刚刚
最狂小脑斧应助Native007采纳,获得10
刚刚
zhang完成签到,获得积分10
1秒前
兴奋不弱完成签到,获得积分10
1秒前
斯文败类应助ytx采纳,获得10
1秒前
科研牛人发布了新的文献求助10
2秒前
成易发布了新的文献求助10
3秒前
老西瓜完成签到,获得积分10
3秒前
乐乐应助烂漫剑采纳,获得10
3秒前
3秒前
at发布了新的文献求助10
3秒前
爆米花应助哇哈哈哈采纳,获得10
3秒前
大模型应助donny采纳,获得10
4秒前
八九发布了新的文献求助10
4秒前
4秒前
落后的涵双关注了科研通微信公众号
5秒前
张同学要谦虚完成签到,获得积分10
6秒前
隐形荟发布了新的文献求助10
6秒前
7秒前
7秒前
CCKaomi发布了新的文献求助30
7秒前
7秒前
pbj发布了新的文献求助10
8秒前
9秒前
10秒前
哈哈哈发布了新的文献求助10
11秒前
donny完成签到,获得积分10
12秒前
科研通AI5应助沉默的书琴采纳,获得10
12秒前
ytx发布了新的文献求助10
12秒前
12秒前
HY发布了新的文献求助10
12秒前
情怀应助钱钱钱采纳,获得10
13秒前
13秒前
13秒前
李爱国应助33采纳,获得10
13秒前
15秒前
15秒前
cjjj发布了新的文献求助10
15秒前
CodeCraft应助pbj采纳,获得10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735290
求助须知:如何正确求助?哪些是违规求助? 3279275
关于积分的说明 10013771
捐赠科研通 2995856
什么是DOI,文献DOI怎么找? 1643736
邀请新用户注册赠送积分活动 781425
科研通“疑难数据库(出版商)”最低求助积分说明 749387