Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

计算机科学 时间序列 平滑的 流量(计算机网络) 智能交通系统 期限(时间) 数据挖掘 人工智能 实时计算 机器学习 工程类 计算机视觉 土木工程 物理 计算机安全 量子力学
作者
Changxi Ma,Guowen Dai,Jibiao Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 5615-5624 被引量:214
标识
DOI:10.1109/tits.2021.3055258
摘要

The real-time performance and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance systems, and traffic flow prediction is a hotspot in the field of intelligent transportation. To further improve the accuracy of short-term traffic flow prediction, a short-term traffic flow prediction model based on traffic flow time series analysis, and an improved long short-term memory network (LSTM) is proposed. First, perform time series analysis on traffic flow data and perform smoothing and standardization processing to obtain a stable time series as model input data, which can improve the accuracy of model training and eliminate the impact of a wide range of feature values. Then, an improved LSTM model based on LSTM and bidirectional LSTM networks are established. Combining the advantages of sequential data and the long-term dependence of forwarding LSTM and reverse LSTM, the bidirectional long-term memory network (BILSTM) is integrated into the prediction model. The first layer of the LSTM network learns and predicts the input time series and further learns and trains through the bidirectional LSTM network to effectively overcome the large prediction errors. Finally, the performance of the proposed method is evaluated by comparing the predicted results with actual traffic data. The model that is proposed in this paper is compared with the long short-term memory network (LSTM) model and the bidirectional long-term memory network (BILSTM) model. The results demonstrate that the proposed method outperforms both compared methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
刚刚
刚刚
汉堡包应助果粒多采纳,获得10
1秒前
5秒前
华仔发布了新的文献求助20
5秒前
5秒前
科研通AI2S应助杜杜采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
JK发布了新的文献求助10
8秒前
打打应助顺利一德采纳,获得10
9秒前
法外狂徒完成签到,获得积分10
10秒前
Orange应助十九岁的时差采纳,获得10
10秒前
科研通AI2S应助steam采纳,获得10
12秒前
潇湘雪月发布了新的文献求助10
12秒前
13秒前
青青子衿完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
crazy发布了新的文献求助10
18秒前
杜杜发布了新的文献求助10
19秒前
嗯嗯发布了新的文献求助10
20秒前
老大蒂亚戈完成签到,获得积分10
22秒前
宝安完成签到,获得积分10
26秒前
JamesPei应助动听的老鼠采纳,获得10
26秒前
26秒前
杨可言完成签到,获得积分10
26秒前
27秒前
27秒前
28秒前
Hello应助子非鱼采纳,获得10
29秒前
30秒前
32秒前
mzhmhy发布了新的文献求助10
34秒前
李健的粉丝团团长应助ASA采纳,获得30
35秒前
Choi完成签到,获得积分0
35秒前
无辜如容发布了新的文献求助10
35秒前
123完成签到,获得积分10
36秒前
37秒前
单耳兔完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136