Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

计算机科学 时间序列 平滑的 流量(计算机网络) 智能交通系统 期限(时间) 数据挖掘 人工智能 实时计算 机器学习 工程类 计算机视觉 土木工程 物理 计算机安全 量子力学
作者
Changxi Ma,Guowen Dai,Jibiao Zhou
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 5615-5624 被引量:214
标识
DOI:10.1109/tits.2021.3055258
摘要

The real-time performance and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance systems, and traffic flow prediction is a hotspot in the field of intelligent transportation. To further improve the accuracy of short-term traffic flow prediction, a short-term traffic flow prediction model based on traffic flow time series analysis, and an improved long short-term memory network (LSTM) is proposed. First, perform time series analysis on traffic flow data and perform smoothing and standardization processing to obtain a stable time series as model input data, which can improve the accuracy of model training and eliminate the impact of a wide range of feature values. Then, an improved LSTM model based on LSTM and bidirectional LSTM networks are established. Combining the advantages of sequential data and the long-term dependence of forwarding LSTM and reverse LSTM, the bidirectional long-term memory network (BILSTM) is integrated into the prediction model. The first layer of the LSTM network learns and predicts the input time series and further learns and trains through the bidirectional LSTM network to effectively overcome the large prediction errors. Finally, the performance of the proposed method is evaluated by comparing the predicted results with actual traffic data. The model that is proposed in this paper is compared with the long short-term memory network (LSTM) model and the bidirectional long-term memory network (BILSTM) model. The results demonstrate that the proposed method outperforms both compared methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的忆霜完成签到 ,获得积分10
8秒前
10秒前
14秒前
风光无限完成签到 ,获得积分20
18秒前
庄海棠完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
31秒前
沐风完成签到 ,获得积分10
37秒前
含糊的茹妖完成签到 ,获得积分0
40秒前
45秒前
huangqian完成签到,获得积分10
50秒前
沧海一粟完成签到 ,获得积分10
53秒前
进击的巨人完成签到 ,获得积分10
55秒前
58秒前
牛马完成签到,获得积分10
59秒前
1分钟前
我不是奶黄包完成签到,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
cq_2完成签到,获得积分10
1分钟前
花生完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
Tianling完成签到,获得积分0
1分钟前
Rn完成签到 ,获得积分10
1分钟前
吉祥高趙完成签到 ,获得积分10
1分钟前
嘉人完成签到 ,获得积分10
1分钟前
可千万不要躺平呀应助yar采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lucas应助尊敬代亦采纳,获得10
1分钟前
yinshan完成签到 ,获得积分10
1分钟前
1分钟前
yar重新开启了小飞文献应助
1分钟前
1分钟前
幸福的杨小夕完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
zozox完成签到 ,获得积分10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
bckl888完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022