Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓶盖的玉莹厨师长完成签到,获得积分10
刚刚
Kira发布了新的文献求助10
2秒前
哦o完成签到,获得积分10
4秒前
青城山下小星瞳完成签到,获得积分10
7秒前
御坂10576号完成签到,获得积分10
7秒前
8秒前
WuYiHHH完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
buno应助小董继续努力采纳,获得10
14秒前
summerer完成签到,获得积分10
14秒前
是小天呀完成签到 ,获得积分10
14秒前
不安忆寒发布了新的文献求助10
15秒前
所所应助仁清采纳,获得20
15秒前
Kraghc发布了新的文献求助100
16秒前
喜悦的天玉完成签到,获得积分10
17秒前
刘柑橘完成签到,获得积分10
17秒前
贪玩的秋柔应助南山南采纳,获得10
19秒前
脑洞疼应助吴宇杰采纳,获得10
19秒前
烟花应助anhao采纳,获得10
19秒前
甜美的煜祺完成签到,获得积分10
20秒前
20秒前
静静完成签到 ,获得积分10
21秒前
22秒前
23秒前
卧病i关注了科研通微信公众号
23秒前
碧蓝笑槐完成签到,获得积分20
23秒前
26秒前
26秒前
碧蓝笑槐发布了新的文献求助30
26秒前
27秒前
27秒前
28秒前
Lucas应助欣欣子采纳,获得10
28秒前
正直幼枫完成签到,获得积分20
28秒前
小董继续努力完成签到,获得积分20
29秒前
大头完成签到 ,获得积分10
29秒前
anhao发布了新的文献求助10
31秒前
Kraghc完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851