Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojie发布了新的文献求助10
3秒前
秋夏山发布了新的文献求助10
4秒前
4秒前
去去去去发布了新的文献求助10
6秒前
城南发布了新的文献求助10
9秒前
11秒前
14秒前
CATH完成签到 ,获得积分10
15秒前
清秀化蛹发布了新的文献求助30
17秒前
西子完成签到,获得积分10
17秒前
Heisnn应助sniper111采纳,获得50
19秒前
史小霜发布了新的文献求助10
20秒前
齐多达完成签到 ,获得积分10
20秒前
顾矜应助xiaojie采纳,获得10
20秒前
秋夏山完成签到,获得积分10
21秒前
27秒前
肆_完成签到 ,获得积分10
29秒前
30秒前
33秒前
温柔的听寒完成签到,获得积分10
34秒前
KCl完成签到 ,获得积分10
36秒前
1234完成签到,获得积分10
38秒前
酷波er应助蓝天采纳,获得10
42秒前
蓝天应助LiWeipeng采纳,获得10
43秒前
45秒前
Verity应助YY采纳,获得10
48秒前
123完成签到,获得积分10
48秒前
蓝天应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
英姑应助科研通管家采纳,获得10
49秒前
外向烤鸡应助科研通管家采纳,获得10
49秒前
Xuezi应助科研通管家采纳,获得10
50秒前
蓝天应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
蓝天应助科研通管家采纳,获得10
50秒前
Zx_1993应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
顾矜应助科研通管家采纳,获得10
50秒前
思源应助科研通管家采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645638
关于积分的说明 14675849
捐赠科研通 4586812
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1461007