Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到 ,获得积分10
5秒前
浮游应助Kevin采纳,获得10
5秒前
橙子雨发布了新的文献求助10
5秒前
久久完成签到 ,获得积分10
7秒前
AA18236931952发布了新的文献求助10
10秒前
张琨完成签到 ,获得积分10
11秒前
无情的素完成签到,获得积分10
14秒前
科研通AI6应助现代水卉采纳,获得10
20秒前
Nothing发布了新的文献求助10
27秒前
Zewen_Li应助迈尔馬采纳,获得10
31秒前
科研通AI6应助Jere采纳,获得20
32秒前
小尹完成签到 ,获得积分10
35秒前
科研通AI6应助Xjx6519采纳,获得10
36秒前
lxl发布了新的文献求助10
38秒前
Hello应助禹平露采纳,获得10
39秒前
47秒前
Lancet发布了新的文献求助20
48秒前
森禾完成签到 ,获得积分10
51秒前
51秒前
上官若男应助曾经的帅哥采纳,获得10
54秒前
陈星翰完成签到,获得积分10
54秒前
stumm发布了新的文献求助10
56秒前
Chief完成签到,获得积分0
57秒前
57秒前
58秒前
奋斗成风发布了新的文献求助10
1分钟前
浮游应助Kevin采纳,获得10
1分钟前
浮游应助扬灵兮采纳,获得10
1分钟前
安详的冷安完成签到,获得积分10
1分钟前
烟花应助keke采纳,获得10
1分钟前
还行吧完成签到 ,获得积分10
1分钟前
俏皮的安萱完成签到 ,获得积分10
1分钟前
材袅完成签到,获得积分10
1分钟前
1分钟前
盐焗鱼丸完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
keke完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523