亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pjy完成签到 ,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
shhoing应助科研通管家采纳,获得10
26秒前
gexzygg应助科研通管家采纳,获得10
26秒前
gexzygg应助科研通管家采纳,获得10
26秒前
gexzygg应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
44秒前
47秒前
李健的小迷弟应助guan采纳,获得10
51秒前
1分钟前
2分钟前
科研通AI6应助Innogen采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
一道光发布了新的文献求助10
2分钟前
深情安青应助一道光采纳,获得30
2分钟前
斯文的硬币完成签到 ,获得积分10
2分钟前
2分钟前
学生信的大叔完成签到,获得积分10
3分钟前
3分钟前
guan完成签到,获得积分10
3分钟前
guan发布了新的文献求助10
3分钟前
谭凯文完成签到 ,获得积分10
3分钟前
海豚有海完成签到 ,获得积分10
3分钟前
共享精神应助dddjs采纳,获得10
4分钟前
Yini应助科研通管家采纳,获得30
4分钟前
Yini应助科研通管家采纳,获得30
4分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
4分钟前
dddjs发布了新的文献求助10
4分钟前
dddjs完成签到,获得积分10
4分钟前
4分钟前
hihi完成签到,获得积分10
5分钟前
Innogen发布了新的文献求助10
5分钟前
Innogen完成签到,获得积分10
5分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561550
求助须知:如何正确求助?哪些是违规求助? 4646648
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490543
关于科研通互助平台的介绍 1461566