Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助无怨无悔采纳,获得10
1秒前
英俊的铭应助研友_8y2G0L采纳,获得10
1秒前
1秒前
2秒前
Hyde完成签到,获得积分10
2秒前
秋末完成签到,获得积分10
4秒前
刘晨文发布了新的文献求助10
5秒前
天天快乐应助活力寒梅采纳,获得10
6秒前
coolkid发布了新的文献求助10
7秒前
CLubiy发布了新的文献求助10
7秒前
in完成签到 ,获得积分10
8秒前
shi完成签到,获得积分10
9秒前
伍德发布了新的文献求助10
11秒前
kekekelili完成签到,获得积分10
11秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
向日葵应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
向日葵应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
亾丄应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
兴奋元灵完成签到 ,获得积分10
15秒前
浅眠发布了新的文献求助10
16秒前
16秒前
希望天下0贩的0应助hf采纳,获得10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226