Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
2秒前
我要看文献完成签到 ,获得积分10
2秒前
wdd完成签到 ,获得积分10
4秒前
李爱国应助开心薯片采纳,获得10
5秒前
6秒前
Z_yiming发布了新的文献求助10
6秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
8秒前
缥缈一刀发布了新的文献求助10
10秒前
小地蛋完成签到 ,获得积分10
11秒前
感谢大哥的帮助完成签到 ,获得积分10
11秒前
614521完成签到,获得积分10
13秒前
111完成签到,获得积分10
14秒前
王先生完成签到 ,获得积分10
14秒前
15秒前
殊荣完成签到,获得积分10
16秒前
JAMA兜里揣完成签到,获得积分10
16秒前
lalala完成签到 ,获得积分10
18秒前
王三歲完成签到,获得积分10
19秒前
你的背包完成签到,获得积分10
19秒前
Yang应助快乐枫采纳,获得10
20秒前
冷傲的如柏完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
Z_yiming完成签到,获得积分10
23秒前
刘雪晴完成签到 ,获得积分10
23秒前
CCL完成签到,获得积分10
24秒前
缥缈一刀完成签到,获得积分10
25秒前
yar应助坚强幼晴采纳,获得10
25秒前
茶茶完成签到,获得积分0
26秒前
斑点完成签到,获得积分10
26秒前
30秒前
鱼儿乐园完成签到 ,获得积分10
30秒前
XF完成签到,获得积分20
31秒前
31秒前
木之木完成签到,获得积分0
31秒前
哈哈哈哈完成签到,获得积分10
31秒前
奋斗摩托完成签到,获得积分10
33秒前
CC完成签到,获得积分10
33秒前
桃子e完成签到 ,获得积分10
34秒前
zhaoli完成签到 ,获得积分10
35秒前
老唐发布了新的文献求助50
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029