清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time noise reduction based on ground truth free deep learning for optical coherence tomography

基本事实 光学相干层析成像 人工智能 计算机科学 深度学习 图像质量 降噪 噪音(视频) 计算机视觉 还原(数学) 信噪比(成像) 残余物 模式识别(心理学) 光学 算法 图像(数学) 数学 物理 电信 几何学
作者
Yong Huang,Nan Zhang,Qun Hao
出处
期刊:Biomedical Optics Express [Optica Publishing Group]
卷期号:12 (4): 2027-2027 被引量:30
标识
DOI:10.1364/boe.419584
摘要

Optical coherence tomography (OCT) is a high-resolution non-invasive 3D imaging modality, which has been widely used for biomedical research and clinical studies. The presence of noise on OCT images is inevitable which will cause problems for post-image processing and diagnosis. The frame-averaging technique that acquires multiple OCT images at the same or adjacent locations can enhance the image quality significantly. Both conventional frame averaging methods and deep learning-based methods using averaged frames as ground truth have been reported. However, conventional averaging methods suffer from the limitation of long image acquisition time, while deep learning-based methods require complicated and tedious ground truth label preparation. In this work, we report a deep learning-based noise reduction method that does not require clean images as ground truth for model training. Three network structures, including Unet, super-resolution residual network (SRResNet), and our modified asymmetric convolution-SRResNet (AC-SRResNet), were trained and evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge preservation index (EPI) and computation time (CT). The effectiveness of these three trained models on OCT images of different samples and different systems was also investigated and confirmed. The SNR improvement for different sample images for L 2 -loss-trained Unet, SRResNet, and AC-SRResNet are 20.83 dB, 24.88 dB, and 22.19 dB, respectively. The SNR improvement for public images from different system for L 1 -loss-trained Unet, SRResNet, and AC-SRResNet are 19.36 dB, 20.11 dB, and 22.15 dB, respectively. AC-SRResNet and SRResNet demonstrate better denoising effect than Unet with longer computation time. AC-SRResNet demonstrates better edge preservation capability than SRResNet while Unet is close to AC-SRResNet. Eventually, we incorporated Unet, SRResNet, and AC-SRResNet into our graphic processing unit accelerated OCT imaging system for online noise reduction evaluation. Real-time noise reduction for OCT images with size of 512×512 pixels for Unet, SRResNet, and AC-SRResNet at 64 fps, 19 fps, and 17 fps were achieved respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快的刚完成签到,获得积分10
4秒前
文献蚂蚁完成签到,获得积分10
4秒前
BMG完成签到,获得积分10
5秒前
朝夕之晖完成签到,获得积分10
5秒前
CGBIO完成签到,获得积分10
5秒前
zzf完成签到,获得积分10
12秒前
冷傲半邪完成签到,获得积分10
17秒前
33秒前
曾经不言完成签到 ,获得积分10
36秒前
刘闹闹完成签到 ,获得积分10
46秒前
zzf发布了新的文献求助10
46秒前
和春住完成签到,获得积分10
55秒前
lty完成签到,获得积分10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助精明晓刚采纳,获得10
1分钟前
1分钟前
瓣落的碎梦完成签到,获得积分10
1分钟前
Destiny发布了新的文献求助10
1分钟前
矢思然完成签到,获得积分10
1分钟前
安琪琪完成签到 ,获得积分10
1分钟前
2分钟前
轩辕中蓝完成签到 ,获得积分10
2分钟前
张凡完成签到 ,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
朵朵完成签到,获得积分10
2分钟前
ggg完成签到 ,获得积分10
2分钟前
myth完成签到,获得积分10
2分钟前
LuciusHe完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
乐观的星月完成签到 ,获得积分10
3分钟前
落落完成签到 ,获得积分0
3分钟前
momoni完成签到 ,获得积分10
3分钟前
4分钟前
rpe发布了新的文献求助10
4分钟前
Lyanph完成签到 ,获得积分10
4分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
CC发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990629
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256552
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234