Efficient Exploration of Chemical Space with Docking and Deep Learning

虚拟筛选 化学空间 计算机科学 生物信息学 杠杆(统计) 人工智能 对接(动物) 计算生物学 机器学习 药物发现 化学 生物信息学 生物 医学 生物化学 基因 护理部
作者
Yang Ying,Kun Yao,Matthew P. Repasky,Karl Leswing,Robert Abel,Brian K. Shoichet,Steven V. Jerome
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (11): 7106-7119 被引量:146
标识
DOI:10.1021/acs.jctc.1c00810
摘要

With the advent of make-on-demand commercial libraries, the number of purchasable compounds available for virtual screening and assay has grown explosively in recent years, with several libraries eclipsing one billion compounds. Today's screening libraries are larger and more diverse, enabling the discovery of more-potent hit compounds and unlocking new areas of chemical space, represented by new core scaffolds. Applying physics-based in silico screening methods in an exhaustive manner, where every molecule in the library must be enumerated and evaluated independently, is increasingly cost-prohibitive. Here, we introduce a protocol for machine learning-enhanced molecular docking based on active learning to dramatically increase throughput over traditional docking. We leverage a novel selection protocol that strikes a balance between two objectives: (1) identifying the best scoring compounds and (2) exploring a large region of chemical space, demonstrating superior performance compared to a purely greedy approach. Together with automated redocking of the top compounds, this method captures almost all the high scoring scaffolds in the library found by exhaustive docking. This protocol is applied to our recent virtual screening campaigns against the D4 and AMPC targets that produced dozens of highly potent, novel inhibitors, and a blind test against the MT1 target. Our protocol recovers more than 80% of the experimentally confirmed hits with a 14-fold reduction in compute cost, and more than 90% of the hit scaffolds in the top 5% of model predictions, preserving the diversity of the experimentally confirmed hit compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
3秒前
乖乖发布了新的文献求助10
4秒前
毕业完成签到,获得积分10
4秒前
YBH发布了新的文献求助10
4秒前
cccc发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
半圭为璋完成签到,获得积分10
5秒前
5秒前
5秒前
甜甜的盼烟完成签到,获得积分10
5秒前
Hello应助科研小白采纳,获得10
6秒前
6秒前
一平发布了新的文献求助10
6秒前
hustzp完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
puziju完成签到,获得积分10
7秒前
8秒前
goldenrod完成签到,获得积分10
8秒前
8秒前
jkook完成签到,获得积分10
8秒前
mml发布了新的文献求助10
9秒前
111发布了新的文献求助10
9秒前
小白完成签到,获得积分10
9秒前
hei发布了新的文献求助10
9秒前
脑洞疼应助行歌采纳,获得10
9秒前
10秒前
10秒前
11秒前
大模型应助花花花花采纳,获得10
11秒前
liu发布了新的文献求助20
11秒前
seven发布了新的文献求助10
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217471
求助须知:如何正确求助?哪些是违规求助? 2866740
关于积分的说明 8153136
捐赠科研通 2533557
什么是DOI,文献DOI怎么找? 1366349
科研通“疑难数据库(出版商)”最低求助积分说明 644741
邀请新用户注册赠送积分活动 617717