已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning classification of lung cancer histology using CT images

人工智能 判别式 肺癌 卷积神经网络 无线电技术 组织学 机器学习 深度学习 腺癌 医学 计算机科学 放射科 病理 癌症 内科学
作者
Tafadzwa L. Chaunzwa,Ahmed Hosny,Yiwen Xu,Andrea T. Shafer,Nancy Diao,Michael Lanuti,David C. Christiani,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Scientific Reports [Springer Nature]
卷期号:11 (1) 被引量:28
标识
DOI:10.1038/s41598-021-84630-x
摘要

Abstract Tumor histology is an important predictor of therapeutic response and outcomes in lung cancer. Tissue sampling for pathologist review is the most reliable method for histology classification, however, recent advances in deep learning for medical image analysis allude to the utility of radiologic data in further describing disease characteristics and for risk stratification. In this study, we propose a radiomics approach to predicting non-small cell lung cancer (NSCLC) tumor histology from non-invasive standard-of-care computed tomography (CT) data. We trained and validated convolutional neural networks (CNNs) on a dataset comprising 311 early-stage NSCLC patients receiving surgical treatment at Massachusetts General Hospital (MGH), with a focus on the two most common histological types: adenocarcinoma (ADC) and Squamous Cell Carcinoma (SCC). The CNNs were able to predict tumor histology with an AUC of 0.71(p = 0.018). We also found that using machine learning classifiers such as k-nearest neighbors (kNN) and support vector machine (SVM) on CNN-derived quantitative radiomics features yielded comparable discriminative performance, with AUC of up to 0.71 (p = 0.017). Our best performing CNN functioned as a robust probabilistic classifier in heterogeneous test sets, with qualitatively interpretable visual explanations to its predictions. Deep learning based radiomics can identify histological phenotypes in lung cancer. It has the potential to augment existing approaches and serve as a corrective aid for diagnosticians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十七。发布了新的文献求助10
5秒前
桐桐应助纪震宇采纳,获得10
5秒前
酷波er应助纪震宇采纳,获得10
5秒前
科研通AI2S应助纪震宇采纳,获得10
5秒前
搜集达人应助纪震宇采纳,获得10
5秒前
Owen应助纪震宇采纳,获得10
5秒前
小二郎应助纪震宇采纳,获得10
5秒前
852应助纪震宇采纳,获得10
5秒前
田様应助纪震宇采纳,获得10
5秒前
Hello应助纪震宇采纳,获得10
5秒前
CipherSage应助纪震宇采纳,获得10
6秒前
科研通AI5应助cheyy采纳,获得10
6秒前
9秒前
国色不染尘完成签到,获得积分10
12秒前
Leon完成签到,获得积分0
12秒前
ipeakkka发布了新的文献求助10
13秒前
友好飞松完成签到,获得积分10
14秒前
陈伟杰发布了新的文献求助10
15秒前
李爱国应助Mida采纳,获得10
18秒前
18秒前
彭于晏应助111采纳,获得30
18秒前
20秒前
jessie完成签到 ,获得积分10
20秒前
万能图书馆应助纪震宇采纳,获得10
21秒前
科研通AI5应助纪震宇采纳,获得10
21秒前
李健的小迷弟应助纪震宇采纳,获得10
21秒前
CipherSage应助纪震宇采纳,获得10
21秒前
Lucas应助纪震宇采纳,获得10
21秒前
科研通AI5应助纪震宇采纳,获得10
21秒前
Orange应助纪震宇采纳,获得10
21秒前
科研通AI5应助纪震宇采纳,获得10
21秒前
NexusExplorer应助纪震宇采纳,获得10
21秒前
研友_VZG7GZ应助纪震宇采纳,获得10
21秒前
nuonuoweng发布了新的文献求助30
22秒前
23秒前
SCISSH完成签到 ,获得积分10
23秒前
wanci应助斯文麦片采纳,获得10
23秒前
24秒前
十七。发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544327
求助须知:如何正确求助?哪些是违规求助? 3121493
关于积分的说明 9347609
捐赠科研通 2819788
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265