Deep learning‐based scheme to diagnose Parkinson's disease

计算机科学 人工智能 模式识别(心理学) 接收机工作特性 卷积神经网络 深度学习 混淆矩阵 磁共振成像 机器学习 医学 放射科
作者
Tarjni Vyas,Raj Kumar Yadav,Chitra Solanki,Rutvi Darji,Shivani Desai,Sudeep Tanwar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:51
标识
DOI:10.1111/exsy.12739
摘要

Abstract Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. A deeper level of feature detection in MRI can identify biomarkers that can be used to know how the disease spreads, leading to a cure in the future. With these motives, we have presented two novel approaches using deep learning (DL) techniques. 2D and 3D convolution neural networks (CNN) are used, which are trained on MRI scans in the axial plane. The dataset was constructed using images from Parkinson's progression markers initiative (PPMI). The four pre‐processing techniques used in this article are bias field correction, histogram matching, Z ‐score normalization, and image resizing. Pre‐processing techniques were essential inaccurate training models. Every class prediction done by the model would have taken multiple features into account across multiple layers of the brain and not relied on a single or few important features, making DL a powerful concept. A total of 318 MRI scans were used to train and test a 2D CNN and a 3D CNN model. We have compared the models' results using different evaluation parameters such as accuracy, loss, confusion matrix, receiver operating characteristic (ROC) curve, and precision‐recall (PR) curve. The 3D model learned key features from the data and was able to classify the test data with 88.9% accuracy with 0.86 area under curve (AUC). In contrast, the 2D model achieved a mediocre accuracy of 72.22% with 0.50 AUC. This shows that the 3D model is more accurate and reliable than the 2D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaozhao发布了新的文献求助10
1秒前
机智初夏发布了新的文献求助10
2秒前
kkk完成签到 ,获得积分10
3秒前
跳跃的梦凡完成签到,获得积分10
3秒前
4秒前
正直三颜完成签到,获得积分10
4秒前
稳重的香萱完成签到 ,获得积分10
4秒前
cami11a完成签到 ,获得积分10
5秒前
anasy完成签到,获得积分0
5秒前
6秒前
毛鑫磊发布了新的文献求助10
6秒前
完美世界应助oyfff采纳,获得10
7秒前
7秒前
Criminology34应助yin景景采纳,获得10
7秒前
浮游应助糕糕采纳,获得10
7秒前
ll完成签到 ,获得积分10
7秒前
CipherSage应助peipei采纳,获得10
7秒前
清雨桩完成签到,获得积分10
8秒前
8秒前
斯文败类应助LBJ采纳,获得10
8秒前
8秒前
酷波er应助ye1121采纳,获得10
9秒前
上官若男应助kisa采纳,获得30
10秒前
P12发布了新的文献求助20
10秒前
虚幻迎南发布了新的文献求助10
11秒前
12秒前
严金鱼发布了新的文献求助10
13秒前
lms0214发布了新的文献求助10
13秒前
13秒前
王仙人发布了新的文献求助20
14秒前
yihongyuan完成签到,获得积分10
14秒前
14秒前
李爱国应助yuuka采纳,获得10
15秒前
勤奋旭尧完成签到,获得积分10
16秒前
17秒前
888发布了新的文献求助30
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800