Deep learning‐based scheme to diagnose Parkinson's disease

计算机科学 人工智能 模式识别(心理学) 接收机工作特性 卷积神经网络 深度学习 混淆矩阵 磁共振成像 机器学习 医学 放射科
作者
Tarjni Vyas,Raj Kumar Yadav,Chitra Solanki,Rutvi Darji,Shivani Desai,Sudeep Tanwar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:51
标识
DOI:10.1111/exsy.12739
摘要

Abstract Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. A deeper level of feature detection in MRI can identify biomarkers that can be used to know how the disease spreads, leading to a cure in the future. With these motives, we have presented two novel approaches using deep learning (DL) techniques. 2D and 3D convolution neural networks (CNN) are used, which are trained on MRI scans in the axial plane. The dataset was constructed using images from Parkinson's progression markers initiative (PPMI). The four pre‐processing techniques used in this article are bias field correction, histogram matching, Z ‐score normalization, and image resizing. Pre‐processing techniques were essential inaccurate training models. Every class prediction done by the model would have taken multiple features into account across multiple layers of the brain and not relied on a single or few important features, making DL a powerful concept. A total of 318 MRI scans were used to train and test a 2D CNN and a 3D CNN model. We have compared the models' results using different evaluation parameters such as accuracy, loss, confusion matrix, receiver operating characteristic (ROC) curve, and precision‐recall (PR) curve. The 3D model learned key features from the data and was able to classify the test data with 88.9% accuracy with 0.86 area under curve (AUC). In contrast, the 2D model achieved a mediocre accuracy of 72.22% with 0.50 AUC. This shows that the 3D model is more accurate and reliable than the 2D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晶晶发布了新的文献求助10
刚刚
Jasper应助liuxiaomeng采纳,获得10
刚刚
刚刚
刚刚
流体离子发电机完成签到,获得积分10
1秒前
CQMZY_2025完成签到,获得积分10
1秒前
aaa北大街发布了新的文献求助10
1秒前
成就迎梅完成签到,获得积分10
1秒前
ly613发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
陆仓颉完成签到,获得积分10
2秒前
共享精神应助yyan采纳,获得10
2秒前
可爱的函函应助myc采纳,获得10
3秒前
眼睛大书桃完成签到,获得积分10
3秒前
ppp发布了新的文献求助10
4秒前
4秒前
我是老大应助喜悦发卡采纳,获得10
4秒前
在水一方应助怡然之玉采纳,获得10
4秒前
5秒前
zhouzhou完成签到,获得积分10
5秒前
汉堡包应助夏cai采纳,获得10
7秒前
杨德凯完成签到,获得积分10
7秒前
7秒前
健壮鸡翅完成签到,获得积分10
7秒前
7秒前
科研通AI6应助无限灵竹采纳,获得10
8秒前
8秒前
清爽的青丝完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
斯文败类应助懵懂的采梦采纳,获得30
10秒前
10秒前
赘婿应助LNE采纳,获得10
11秒前
彭于晏应助小玉采纳,获得10
12秒前
zm完成签到,获得积分10
12秒前
哈哈酱发布了新的文献求助10
12秒前
mmmm完成签到,获得积分20
13秒前
cc完成签到 ,获得积分10
13秒前
kaiqiang完成签到,获得积分20
13秒前
自由友容发布了新的文献求助10
14秒前
核潜艇很优秀应助abdu采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986