Deep learning‐based scheme to diagnose Parkinson's disease

计算机科学 人工智能 模式识别(心理学) 接收机工作特性 卷积神经网络 深度学习 混淆矩阵 磁共振成像 机器学习 医学 放射科
作者
Tarjni Vyas,Raj Kumar Yadav,Chitra Solanki,Rutvi Darji,Shivani Desai,Sudeep Tanwar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (3) 被引量:34
标识
DOI:10.1111/exsy.12739
摘要

Abstract Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. A deeper level of feature detection in MRI can identify biomarkers that can be used to know how the disease spreads, leading to a cure in the future. With these motives, we have presented two novel approaches using deep learning (DL) techniques. 2D and 3D convolution neural networks (CNN) are used, which are trained on MRI scans in the axial plane. The dataset was constructed using images from Parkinson's progression markers initiative (PPMI). The four pre‐processing techniques used in this article are bias field correction, histogram matching, Z ‐score normalization, and image resizing. Pre‐processing techniques were essential inaccurate training models. Every class prediction done by the model would have taken multiple features into account across multiple layers of the brain and not relied on a single or few important features, making DL a powerful concept. A total of 318 MRI scans were used to train and test a 2D CNN and a 3D CNN model. We have compared the models' results using different evaluation parameters such as accuracy, loss, confusion matrix, receiver operating characteristic (ROC) curve, and precision‐recall (PR) curve. The 3D model learned key features from the data and was able to classify the test data with 88.9% accuracy with 0.86 area under curve (AUC). In contrast, the 2D model achieved a mediocre accuracy of 72.22% with 0.50 AUC. This shows that the 3D model is more accurate and reliable than the 2D model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_7ZebY8完成签到,获得积分10
1秒前
十万大山兵大大完成签到,获得积分10
1秒前
渊_完成签到,获得积分10
1秒前
123566完成签到,获得积分10
1秒前
flysky120完成签到,获得积分10
1秒前
1秒前
fox完成签到 ,获得积分10
1秒前
2秒前
NexusExplorer应助旭爸爸采纳,获得10
2秒前
smileriver完成签到,获得积分10
2秒前
吃水果的老虎完成签到,获得积分10
2秒前
Rahul完成签到,获得积分10
3秒前
勤恳的仰发布了新的文献求助10
3秒前
我独舞完成签到 ,获得积分10
3秒前
FIN应助hwq采纳,获得10
4秒前
一鸣大人发布了新的文献求助10
4秒前
cua完成签到,获得积分10
4秒前
BANG完成签到,获得积分10
4秒前
狄语蕊完成签到,获得积分10
4秒前
OccupyMars2025关注了科研通微信公众号
5秒前
朱凌娇发布了新的文献求助10
5秒前
珍珠糖发布了新的文献求助10
5秒前
优雅盼海发布了新的文献求助10
5秒前
沉淀完成签到,获得积分10
6秒前
科研助手6应助岳凯采纳,获得10
6秒前
kevin完成签到 ,获得积分10
6秒前
7秒前
7秒前
CCCCPUTA完成签到,获得积分10
8秒前
Haonan完成签到,获得积分10
8秒前
Refuel完成签到,获得积分10
8秒前
终梦发布了新的文献求助20
9秒前
积极的如之完成签到,获得积分10
9秒前
9秒前
xueshufengbujue完成签到,获得积分10
9秒前
秋慕蕊发布了新的文献求助10
10秒前
ColinWine完成签到,获得积分10
10秒前
cua发布了新的文献求助20
11秒前
隐形的乐枫完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259