To gain insights into the influence of heat stress on lipid metabolism in juvenile turbot (Scophthalmus maximus), we analyzed the correlations between data obtained by transcriptome sequencing and metabolome sequencing of the kidney under different high temperature stimuli (20 °C, 25 °C and 28 °C) and control conditions (14 °C). We identified the differentially expressed genes and metabolites, which were found to be enriched in seven pathways (steroid hormone biosynthesis, primary bile acid biosynthesis, glycerophospholipid metabolism, linoleic acid metabolism, sphingolipid metabolism, glycerolipid metabolism and biosynthesis of unsaturated fatty acids) associated with lipid metabolism, according to KEGG pathway analysis. After correlation analysis of these differentially expressed genes, the most representative genes (lpcat2, Etnk1, TAZ, SCP2, ch25hl and gpd1l) and metabolites (citicoline, UPD-6-sulfoquinovose, dihydroxyacetone, taurine and o-phosphocholine) were selected according to their correlation coefficients. These genes and metabolites were found to be the key points to regulate lipid deposition and maintain lipid homeostasis through varying degrees of up-regulation or down-regulation under heat stress, so as to relieve the disorder of lipid metabolism caused by heat stress, which is of great significance for breeding new heat-resistant varieties of turbot and provides a reliable theoretical basis for optimizing actual production. These results provide new clues for understanding the roles of lipid metabolism in fish under heat stress.