Magnetic iron nanoparticles calcined from biosynthesis for fluoroquinolone antibiotic removal from wastewater

废水 诺氟沙星 抗菌活性 催化作用 化学工程 氧化铁纳米粒子 煅烧 磷酸盐
作者
Xiulan Weng,Wanling Cai,Gary Owens,Zuliang Chen
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:319: 128734- 被引量:2
标识
DOI:10.1016/j.jclepro.2021.128734
摘要

Abstract Efficient methods for the removal of fluoroquinolone antibiotics from both surface and wastewaters are urgently required due to the significant global ecosystem disturbances elevated concentrations of such substances are causing. In this study, calcined magnetic iron nanoparticles (nFe) fabricated via a biosynthetic route were successfully used to remove two representative fluoroquinolone antibiotics, ofloxacin and pefloxacin from aqueous solution. The prepared nanoparticles were spherical with a particle diameter between 20 and 50 nm and were highly magnetic with a saturation magnetization of 58.5 emu g−1. Energy dispersion spectrum (EDS), Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectra (XPS) characterization all indicated the existence of substantial organic capping agent on the nanoparticles surface, which facilitated fluoroquinolone adsorption. The adsorption efficiency of ofloxacin and pefloxacin reached 100% within 300 min for a FQ concentration of 5 mg L−1. The adsorption of both ofloxacin and pefloxacin followed pseudo-second-order kinetics model and best fit the Freundlich adsorption isotherm model, with adsorption capacities of 12.8 and 16.2 mg g−1, respectively. Thermodynamic studies showed that for both fluoroquinolone adsorption was endothermic and spontaneous. A probable removal mechanism of ofloxacin and pefloxacin by nFe was proposed, involving pore-filling, hydrogen bonding, and electrostatic interaction. Regeneration and application studies, exposing nFe to real water samples, practically demonstrated that nFe was a high-quality adsorption material with significant potential for environmental remediation applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
样子发布了新的文献求助10
1秒前
一一发布了新的文献求助10
1秒前
2秒前
5秒前
鱼鱼鱼完成签到,获得积分10
6秒前
7秒前
7秒前
旧旧发布了新的文献求助10
9秒前
uu发布了新的文献求助10
9秒前
JUST完成签到,获得积分10
9秒前
10秒前
科研通AI5应助11122333采纳,获得10
16秒前
我想放假完成签到 ,获得积分10
17秒前
19秒前
徐羽丰完成签到,获得积分10
21秒前
VikkiV_发布了新的文献求助10
24秒前
26秒前
16是南京市完成签到 ,获得积分10
26秒前
30秒前
31秒前
zhang发布了新的文献求助10
31秒前
32秒前
33秒前
Rita发布了新的文献求助10
35秒前
35秒前
biaoguo发布了新的文献求助200
37秒前
应樱完成签到 ,获得积分10
37秒前
TTRRCEB发布了新的文献求助10
38秒前
39秒前
44秒前
帅比坤完成签到,获得积分20
45秒前
jujijuji完成签到,获得积分10
46秒前
50秒前
54秒前
bluebell完成签到,获得积分10
54秒前
顽固的肉完成签到,获得积分10
55秒前
今后应助甜甜采纳,获得10
57秒前
bc应助FKVB_采纳,获得20
57秒前
11122333发布了新的文献求助10
58秒前
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775525
求助须知:如何正确求助?哪些是违规求助? 3321190
关于积分的说明 10203825
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766