材料科学
密度泛函理论
异核分子
法拉第效率
催化作用
双金属
电化学
Atom(片上系统)
金属
费米能级
带隙
化学物理
物理化学
电极
计算化学
化学
分子
冶金
嵌入式系统
电子
物理
有机化学
量子力学
生物化学
光电子学
计算机科学
作者
Youzhi Li,Bo Wei,Minghui Zhu,Jiacheng Chen,Qike Jiang,Bin Yang,Yang Hou,Lecheng Lei,Zhongjian Li,Ruifeng Zhang,Yingying Lü
标识
DOI:10.1002/adma.202102212
摘要
Abstract Dual‐atom catalysts have the potential to outperform the well‐established single‐atom catalysts for the electrochemical conversion of CO 2 . However, the lack of understanding regarding the mechanism of this enhanced catalytic process prevents the rational design of high‐performance catalysts. Herein, an obvious synergistic effect in atomically dispersed Ni–Zn bimetal sites is observed. In situ characterization combined with density functional theory (DFT) calculations reveals that heteronuclear coordination modifies the d‐states of the metal atom, narrowing the gap between the d‐band centre (ε d ) of the Ni (3d) orbitals and the Fermi energy level ( E F ) to strengthen the electronic interaction at the reaction interface, resulting in a lower free energy barrier (Δ G ) in the thermodynamic pathway and a reduced activation energy ( E a ) as well as fortified metal–C bonding in the kinetic pathway. Consequently, a CO faradaic efficiency of >90% is obtained across a broad potential window from − 0.5 to − 1.0 V (vs RHE), reaching a maximum of 99% at −0.8 V, superior to that of the Ni/Zn single‐metal sites.
科研通智能强力驱动
Strongly Powered by AbleSci AI