亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning-based thermal error prediction and control with deep residual LSTM network

残余物 稳健性(进化) 控制理论(社会学) 初始化 计算机科学 人工智能 算法 控制(管理) 生物化学 基因 化学 程序设计语言
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:237: 107704-107704 被引量:54
标识
DOI:10.1016/j.knosys.2021.107704
摘要

The thermal error is a dominant factor that seriously hinders the high-accuracy machining of complex parts. The weak robustness and low predictive accuracy have always been barriers to the wide use of data-based models. To improve the robustness, the transfer learning-based error control method is proposed in this study. The error mechanism modeling is conducted to demonstrate the memory behavior of thermal errors, and the applicability of a long short-term memory network (LSTMN) for the error prediction is proven. Then an improved least mean square (ILMS) is proposed to filter the high-frequency noises and remove singular values. A pre-activated residual block is designed, and is embedded into the deep residual LSTMN (DRLSTMN). The differential spotted hyenas optimization algorithm (DSHOA) is proposed based on the chaos initialization strategy, differential mutation operator, and nonlinear control factor to optimize the hyper-parameters of DRLSTMN. Then the ILMS-DSHOA-DRLSTMN error prediction model is proposed for machine tool #1. The transfer learning model is established for machine tool #2 based on ILMS-DSHOA-DRLSTMN to enhance the robustness. The predictive abilities of the transfer learning models of ILMS-DSHOA-DRLSTMN, ILMS-DRLSTMN, ILMS-DSHOA-LSTMN, ILMS-back propagation network (ILMS-BP), ILMS-multiple linear regression analysis (ILMS-MLRA), ILMS-least squared support vector machine (ILMS-LSSVM), ILMS-CNNs-LSTM (ILMS-CL), and ILMS-deep calibration (ILMS-DC) are 98.37%, 97.95%, 97.60%, 94.51%, 95.41%, 96.02%, 96.43%, and 96.06%, respectively. Finally, the actual machining experiments were performed. When the thermal error is controlled with the transfer learning model, the fluctuation ranges for the geometric errors for D1 and D2 are [−4μm, 4μm] and [−3μm, 3μm], respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助火星上含芙采纳,获得10
10秒前
22秒前
fanhuaxuejin完成签到 ,获得积分10
23秒前
26秒前
41秒前
冬雪丶消融完成签到,获得积分10
42秒前
HOPKINSON发布了新的文献求助10
46秒前
Paris完成签到 ,获得积分10
47秒前
真的想不出名儿了完成签到,获得积分20
50秒前
科目三应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
鲁欢发布了新的文献求助10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
imlaoji发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
2分钟前
zzzz完成签到 ,获得积分10
3分钟前
dylan发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助娇气的亦云采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
我能读懂文献完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
dylan完成签到 ,获得积分20
3分钟前
caca完成签到,获得积分0
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031109
求助须知:如何正确求助?哪些是违规求助? 4265949
关于积分的说明 13298344
捐赠科研通 4074987
什么是DOI,文献DOI怎么找? 2228809
邀请新用户注册赠送积分活动 1237448
关于科研通互助平台的介绍 1162152