Transfer learning-based thermal error prediction and control with deep residual LSTM network

残余物 稳健性(进化) 控制理论(社会学) 均方误差 计算机科学 人工智能 算法 数学 统计 控制(管理) 生物化学 基因 化学
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:237: 107704-107704 被引量:40
标识
DOI:10.1016/j.knosys.2021.107704
摘要

The thermal error is a dominant factor that seriously hinders the high-accuracy machining of complex parts. The weak robustness and low predictive accuracy have always been barriers to the wide use of data-based models. To improve the robustness, the transfer learning-based error control method is proposed in this study. The error mechanism modeling is conducted to demonstrate the memory behavior of thermal errors, and the applicability of a long short-term memory network (LSTMN) for the error prediction is proven. Then an improved least mean square (ILMS) is proposed to filter the high-frequency noises and remove singular values. A pre-activated residual block is designed, and is embedded into the deep residual LSTMN (DRLSTMN). The differential spotted hyenas optimization algorithm (DSHOA) is proposed based on the chaos initialization strategy, differential mutation operator, and nonlinear control factor to optimize the hyper-parameters of DRLSTMN. Then the ILMS-DSHOA-DRLSTMN error prediction model is proposed for machine tool #1. The transfer learning model is established for machine tool #2 based on ILMS-DSHOA-DRLSTMN to enhance the robustness. The predictive abilities of the transfer learning models of ILMS-DSHOA-DRLSTMN, ILMS-DRLSTMN, ILMS-DSHOA-LSTMN, ILMS-back propagation network (ILMS-BP), ILMS-multiple linear regression analysis (ILMS-MLRA), ILMS-least squared support vector machine (ILMS-LSSVM), ILMS-CNNs-LSTM (ILMS-CL), and ILMS-deep calibration (ILMS-DC) are 98.37%, 97.95%, 97.60%, 94.51%, 95.41%, 96.02%, 96.43%, and 96.06%, respectively. Finally, the actual machining experiments were performed. When the thermal error is controlled with the transfer learning model, the fluctuation ranges for the geometric errors for D1 and D2 are [−4μm, 4μm] and [−3μm, 3μm], respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yier完成签到,获得积分10
2秒前
2秒前
凉茗余香完成签到 ,获得积分10
3秒前
蜡笔小猪发布了新的文献求助10
3秒前
超级蘑菇关注了科研通微信公众号
3秒前
滴滴完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
执着的怜寒完成签到,获得积分10
5秒前
伍六七完成签到 ,获得积分10
5秒前
诸觅双完成签到 ,获得积分10
5秒前
无花果应助wbgwudi采纳,获得30
7秒前
zhangyuheng完成签到,获得积分10
7秒前
安静的安寒完成签到,获得积分10
7秒前
跳跃聪健完成签到,获得积分10
8秒前
Negan完成签到,获得积分10
8秒前
8秒前
a1oft完成签到,获得积分10
9秒前
细腻沅发布了新的文献求助10
9秒前
李爱国应助温柔的十三采纳,获得10
9秒前
9秒前
橘子海完成签到 ,获得积分10
9秒前
整齐尔蝶完成签到,获得积分10
11秒前
11秒前
笛子完成签到,获得积分10
11秒前
通~发布了新的文献求助10
11秒前
11秒前
11秒前
梁小鑫完成签到,获得积分10
11秒前
东郭诗双完成签到,获得积分20
12秒前
小老虎的妈妈完成签到 ,获得积分10
12秒前
彭于彦祖发布了新的文献求助20
12秒前
12秒前
12秒前
个性南莲完成签到,获得积分10
13秒前
ZZ完成签到,获得积分10
13秒前
13秒前
yuki完成签到 ,获得积分10
13秒前
常常完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740