Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

土地覆盖 支持向量机 计算机科学 随机森林 机器学习 数据挖掘 人工智能 地球观测 领域(数学) 遥感 卫星 土地利用 工程类 地理 数学 航空航天工程 土木工程 纯数学
作者
Bakhtiar Feizizadeh,Davoud Omarzadeh,Mohammad Kazemi Garajeh,Tobia Lakes,Thomas Blaschke
出处
期刊:Journal of Environmental Planning and Management [Informa]
卷期号:66 (3): 665-697 被引量:103
标识
DOI:10.1080/09640568.2021.2001317
摘要

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiang发布了新的文献求助20
1秒前
猫猫头完成签到 ,获得积分10
14秒前
wBw完成签到,获得积分0
17秒前
ChatGPT发布了新的文献求助10
27秒前
落雪完成签到 ,获得积分10
27秒前
Winnie完成签到 ,获得积分10
31秒前
绵羊座鸭梨完成签到 ,获得积分10
37秒前
领导范儿应助Winnie采纳,获得30
39秒前
kmzzy完成签到,获得积分10
40秒前
郝老头完成签到,获得积分0
43秒前
baa完成签到,获得积分10
43秒前
调皮平蓝完成签到,获得积分10
47秒前
猪鼓励完成签到,获得积分10
52秒前
54秒前
GG爆完成签到,获得积分10
57秒前
zxm完成签到,获得积分10
58秒前
小乙猪完成签到 ,获得积分0
1分钟前
坚强的磬完成签到,获得积分10
1分钟前
mrconli完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
落寞的幻竹完成签到,获得积分10
1分钟前
ldr888完成签到,获得积分10
1分钟前
儒雅的兔子完成签到 ,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
1分钟前
Jeffery426发布了新的文献求助10
1分钟前
bi完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
1分钟前
1分钟前
朝圣者发布了新的文献求助10
1分钟前
无心客完成签到,获得积分10
1分钟前
一个柔弱的读书人完成签到 ,获得积分10
2分钟前
郭德久完成签到 ,获得积分0
2分钟前
woshiwuziq完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293791
求助须知:如何正确求助?哪些是违规求助? 4443877
关于积分的说明 13831637
捐赠科研通 4327752
什么是DOI,文献DOI怎么找? 2375718
邀请新用户注册赠送积分活动 1370996
关于科研通互助平台的介绍 1335984