亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

土地覆盖 支持向量机 计算机科学 随机森林 机器学习 数据挖掘 人工智能 地球观测 领域(数学) 遥感 卫星 土地利用 工程类 地理 数学 航空航天工程 土木工程 纯数学
作者
Bakhtiar Feizizadeh,Davoud Omarzadeh,Mohammad Kazemi Garajeh,Tobia Lakes,Thomas Blaschke
出处
期刊:Journal of Environmental Planning and Management [Taylor & Francis]
卷期号:66 (3): 665-697 被引量:103
标识
DOI:10.1080/09640568.2021.2001317
摘要

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Virtual应助科研通管家采纳,获得20
27秒前
慕青应助科研通管家采纳,获得10
27秒前
Virtual应助科研通管家采纳,获得20
27秒前
1分钟前
2分钟前
flyingpig完成签到,获得积分10
3分钟前
leaolf应助flyingpig采纳,获得10
3分钟前
leaolf应助flyingpig采纳,获得10
3分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助宝贝采纳,获得10
4分钟前
4分钟前
宝贝发布了新的文献求助10
5分钟前
5分钟前
蒙豆儿发布了新的文献求助10
5分钟前
eeven完成签到 ,获得积分10
5分钟前
彭于晏应助蒙豆儿采纳,获得10
5分钟前
英姑应助蒙豆儿采纳,获得10
5分钟前
李联洪应助科研通管家采纳,获得20
6分钟前
打打应助John采纳,获得10
6分钟前
Able完成签到,获得积分10
6分钟前
搜集达人应助宝贝采纳,获得10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
8分钟前
宝贝发布了新的文献求助10
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
yyds举报xdd求助涉嫌违规
8分钟前
sofardli发布了新的文献求助10
8分钟前
sofardli完成签到,获得积分10
9分钟前
9分钟前
蒙豆儿发布了新的文献求助10
9分钟前
9分钟前
孙孙发布了新的文献求助10
9分钟前
10分钟前
yyw发布了新的文献求助10
10分钟前
zhao完成签到,获得积分10
10分钟前
黑大侠完成签到 ,获得积分0
10分钟前
深度精分患者完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582150
求助须知:如何正确求助?哪些是违规求助? 3999965
关于积分的说明 12381933
捐赠科研通 3674852
什么是DOI,文献DOI怎么找? 2025403
邀请新用户注册赠送积分活动 1059180
科研通“疑难数据库(出版商)”最低求助积分说明 945782