Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

土地覆盖 支持向量机 计算机科学 随机森林 机器学习 数据挖掘 人工智能 地球观测 领域(数学) 遥感 卫星 土地利用 工程类 地理 数学 航空航天工程 土木工程 纯数学
作者
Bakhtiar Feizizadeh,Davoud Omarzadeh,Mohammad Kazemi Garajeh,Tobia Lakes,Thomas Blaschke
出处
期刊:Journal of Environmental Planning and Management [Taylor & Francis]
卷期号:66 (3): 665-697 被引量:103
标识
DOI:10.1080/09640568.2021.2001317
摘要

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿地土狗发布了新的文献求助10
1秒前
大模型应助happy采纳,获得10
3秒前
xinyue发布了新的文献求助20
3秒前
根根发布了新的文献求助10
4秒前
6秒前
森花发布了新的文献求助10
7秒前
9秒前
妥协完成签到 ,获得积分10
10秒前
小蘑菇应助犹豫笑容采纳,获得10
11秒前
绿地土狗完成签到,获得积分10
13秒前
dreamode完成签到,获得积分10
14秒前
墨殇发布了新的文献求助10
14秒前
清蒸鱼吖发布了新的文献求助10
16秒前
小二郎应助风晓博采纳,获得10
16秒前
18秒前
20秒前
fxx发布了新的文献求助20
20秒前
科研通AI5应助SHIKAMARU采纳,获得10
20秒前
22秒前
22秒前
明亮若枫发布了新的文献求助20
22秒前
22秒前
Rage_Wang应助研友_xnEOX8采纳,获得30
25秒前
黄小慧发布了新的文献求助10
25秒前
脑洞疼应助叶世玉采纳,获得10
26秒前
26秒前
happy发布了新的文献求助10
27秒前
27秒前
无私的翼发布了新的文献求助10
27秒前
娜娜发布了新的文献求助10
29秒前
王手发布了新的文献求助10
30秒前
31秒前
32秒前
夏虫语冰发布了新的文献求助10
33秒前
33秒前
34秒前
科研通AI5应助12345采纳,获得10
35秒前
35秒前
科研通AI5应助墨殇采纳,获得10
35秒前
星月夜发布了新的文献求助10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676430
求助须知:如何正确求助?哪些是违规求助? 3230724
关于积分的说明 9792047
捐赠科研通 2941831
什么是DOI,文献DOI怎么找? 1612832
邀请新用户注册赠送积分活动 761306
科研通“疑难数据库(出版商)”最低求助积分说明 736776