清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

土地覆盖 支持向量机 计算机科学 随机森林 机器学习 数据挖掘 人工智能 地球观测 领域(数学) 遥感 卫星 土地利用 工程类 地理 数学 航空航天工程 土木工程 纯数学
作者
Bakhtiar Feizizadeh,Davoud Omarzadeh,Mohammad Kazemi Garajeh,Tobia Lakes,Thomas Blaschke
出处
期刊:Journal of Environmental Planning and Management [Taylor & Francis]
卷期号:66 (3): 665-697 被引量:103
标识
DOI:10.1080/09640568.2021.2001317
摘要

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
佳佳应助华东小可爱采纳,获得10
13秒前
量子星尘发布了新的文献求助10
23秒前
32秒前
阿泽完成签到 ,获得积分10
1分钟前
青出于蓝蔡完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
1分钟前
华仔应助墨池采纳,获得10
1分钟前
xyjf15完成签到,获得积分10
1分钟前
1分钟前
2分钟前
庄彧完成签到 ,获得积分10
2分钟前
2分钟前
最最最发布了新的文献求助10
2分钟前
2分钟前
在水一方应助最最最采纳,获得10
2分钟前
111111111发布了新的文献求助10
2分钟前
2分钟前
华东小可爱完成签到,获得积分10
2分钟前
小天使海蒂完成签到 ,获得积分10
2分钟前
有志者发布了新的文献求助10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
有志者完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
懒狗羊完成签到,获得积分10
3分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
cadcae完成签到,获得积分10
4分钟前
杨天天完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
轩辕冰夏发布了新的文献求助20
4分钟前
4分钟前
轩辕冰夏完成签到,获得积分10
5分钟前
5分钟前
Eric800824完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264