Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

土地覆盖 支持向量机 计算机科学 随机森林 机器学习 数据挖掘 人工智能 地球观测 领域(数学) 遥感 卫星 土地利用 工程类 地理 数学 航空航天工程 土木工程 纯数学
作者
Bakhtiar Feizizadeh,Davoud Omarzadeh,Mohammad Kazemi Garajeh,Tobia Lakes,Thomas Blaschke
出处
期刊:Journal of Environmental Planning and Management [Informa]
卷期号:66 (3): 665-697 被引量:103
标识
DOI:10.1080/09640568.2021.2001317
摘要

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yin发布了新的文献求助10
1秒前
Kitty发布了新的文献求助30
2秒前
左友铭发布了新的文献求助10
2秒前
2秒前
潇大魏发布了新的文献求助10
2秒前
2秒前
嘿嘿完成签到 ,获得积分10
3秒前
爱啃文的小郝完成签到,获得积分10
4秒前
4秒前
滕永杰完成签到,获得积分10
5秒前
6秒前
尊嘟假嘟完成签到,获得积分10
7秒前
8秒前
雨淋沐风发布了新的文献求助10
8秒前
无情平松完成签到,获得积分10
10秒前
王小白完成签到,获得积分10
10秒前
10秒前
阿童木发布了新的文献求助10
10秒前
11秒前
11秒前
14秒前
14秒前
雨淋沐风完成签到,获得积分10
14秒前
艾欧比发布了新的文献求助10
14秒前
15秒前
xing关注了科研通微信公众号
16秒前
17秒前
leptin完成签到 ,获得积分10
18秒前
随便完成签到,获得积分20
19秒前
samskaras发布了新的文献求助10
19秒前
20秒前
Mandy发布了新的文献求助10
20秒前
20秒前
郭果儿发布了新的文献求助10
22秒前
liu1123发布了新的文献求助10
22秒前
李浩然发布了新的文献求助30
24秒前
TJC完成签到,获得积分20
25秒前
samskaras完成签到,获得积分10
26秒前
27秒前
Peanut发布了新的文献求助10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247794
求助须知:如何正确求助?哪些是违规求助? 2891053
关于积分的说明 8265876
捐赠科研通 2559283
什么是DOI,文献DOI怎么找? 1388075
科研通“疑难数据库(出版商)”最低求助积分说明 650683
邀请新用户注册赠送积分活动 627577