A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
wjx关闭了wjx文献求助
5秒前
wangding完成签到,获得积分10
5秒前
6秒前
饱满南松发布了新的文献求助10
7秒前
AAA1798发布了新的文献求助10
7秒前
cc完成签到,获得积分10
8秒前
8秒前
8秒前
chen完成签到,获得积分10
9秒前
wjx关闭了wjx文献求助
9秒前
幸运星完成签到 ,获得积分10
10秒前
10秒前
体贴向日葵完成签到,获得积分10
10秒前
lxdfrank完成签到,获得积分10
12秒前
12秒前
orixero应助饱满南松采纳,获得10
13秒前
13秒前
失眠无声发布了新的文献求助10
13秒前
chen发布了新的文献求助10
14秒前
wjx关闭了wjx文献求助
14秒前
Gemini完成签到,获得积分10
15秒前
16秒前
橘子应助蘑菇丰收采纳,获得10
18秒前
LI发布了新的文献求助30
18秒前
18秒前
wjx关闭了wjx文献求助
18秒前
19秒前
19秒前
20秒前
可爱的函函应助执着沛蓝采纳,获得10
21秒前
852应助失眠无声采纳,获得10
21秒前
wjx关闭了wjx文献求助
22秒前
恒123发布了新的文献求助10
23秒前
江夏清发布了新的文献求助10
24秒前
26秒前
26秒前
赘婿应助123采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305