A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助腿哥采纳,获得10
2秒前
超级的鞅发布了新的文献求助10
3秒前
3秒前
张丽妍发布了新的文献求助10
4秒前
Viper3发布了新的文献求助30
4秒前
苦行僧完成签到,获得积分10
4秒前
希望天下0贩的0应助未了采纳,获得10
5秒前
5秒前
完美世界应助王子恒采纳,获得10
6秒前
6秒前
4652376完成签到 ,获得积分0
6秒前
yyy完成签到,获得积分10
8秒前
球闪发布了新的文献求助10
9秒前
谦让夏云完成签到,获得积分10
10秒前
donzang完成签到,获得积分10
10秒前
10秒前
风屿完成签到,获得积分10
10秒前
脑洞疼应助忧心的不言采纳,获得10
10秒前
小青椒应助wqr采纳,获得30
11秒前
周老八发布了新的文献求助10
12秒前
彩色的谷兰完成签到,获得积分10
12秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488