A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
坚强莺完成签到,获得积分10
1秒前
慕斯唐完成签到,获得积分10
1秒前
3秒前
豆芽发布了新的文献求助10
3秒前
4秒前
伶俐芷珊完成签到,获得积分10
5秒前
vikey完成签到 ,获得积分10
6秒前
小蘑菇应助78888采纳,获得10
6秒前
桐桐应助袁梦采纳,获得10
7秒前
7秒前
Lwssss完成签到,获得积分10
7秒前
斯文败类应助niuniuff66采纳,获得10
7秒前
SciGPT应助大狒狒采纳,获得10
7秒前
7秒前
7秒前
8秒前
手残症完成签到,获得积分10
9秒前
9秒前
猫猫文发布了新的文献求助10
10秒前
10秒前
Docsiwen完成签到 ,获得积分10
11秒前
DF123发布了新的文献求助10
11秒前
Nature审稿人关注了科研通微信公众号
11秒前
vantie发布了新的文献求助10
12秒前
大神装发布了新的文献求助10
12秒前
袁梦完成签到,获得积分10
13秒前
14秒前
14秒前
宋可乐完成签到,获得积分10
15秒前
15秒前
丘比特应助温暖的问寒采纳,获得30
15秒前
16秒前
16秒前
喜悦的飞凤完成签到,获得积分10
17秒前
19秒前
科目三应助taco采纳,获得10
19秒前
大菠萝是什么味完成签到,获得积分10
19秒前
娟不卷发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095