A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助hqh采纳,获得10
刚刚
1秒前
1秒前
大力向南发布了新的文献求助10
1秒前
zhanjl13完成签到,获得积分10
2秒前
科研通AI5应助青葱鱼块采纳,获得10
3秒前
keyou发布了新的文献求助10
3秒前
哆啦A梦完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
可靠的晓蓝完成签到,获得积分10
7秒前
遂安完成签到,获得积分10
10秒前
外星猫完成签到,获得积分10
10秒前
11秒前
摸之恶莫发布了新的文献求助10
11秒前
11秒前
15秒前
青葱鱼块发布了新的文献求助10
17秒前
lynn发布了新的文献求助10
17秒前
18秒前
默默完成签到,获得积分10
18秒前
王玉洁发布了新的文献求助10
20秒前
哆啦的空间站应助zzy采纳,获得10
21秒前
21秒前
欣慰冷卉发布了新的文献求助10
21秒前
顺心未来发布了新的文献求助10
22秒前
摸之恶莫完成签到,获得积分10
22秒前
乐乐应助lynn采纳,获得30
23秒前
11完成签到,获得积分10
24秒前
CipherSage应助顺心未来采纳,获得10
26秒前
科研通AI2S应助曾经初珍采纳,获得10
26秒前
26秒前
倩谕QianYu完成签到 ,获得积分10
27秒前
励志小薛完成签到,获得积分20
29秒前
bkagyin应助HHHY采纳,获得10
30秒前
30秒前
JamesPei应助FSX采纳,获得10
31秒前
逢山完成签到,获得积分10
34秒前
马爱英完成签到,获得积分10
34秒前
永远热爱物理完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906800
求助须知:如何正确求助?哪些是违规求助? 4184172
关于积分的说明 12993073
捐赠科研通 3950468
什么是DOI,文献DOI怎么找? 2166494
邀请新用户注册赠送积分活动 1185103
关于科研通互助平台的介绍 1091415