A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77给77的求助进行了留言
刚刚
刚刚
1秒前
2秒前
dqycpu完成签到,获得积分10
2秒前
4秒前
4秒前
feifei完成签到 ,获得积分20
5秒前
5秒前
在望完成签到,获得积分10
5秒前
m木宁木蒙完成签到 ,获得积分10
5秒前
电冰箱发布了新的文献求助30
5秒前
OutMan发布了新的文献求助10
6秒前
面包超人完成签到,获得积分10
6秒前
6秒前
Hello应助dqycpu采纳,获得10
6秒前
7秒前
7秒前
7秒前
哈哈哈完成签到,获得积分10
7秒前
无名发布了新的文献求助10
8秒前
风xxq完成签到,获得积分10
8秒前
优秀笑寒完成签到,获得积分10
8秒前
顾矜应助pomfret采纳,获得10
9秒前
小二郎应助jiyuan采纳,获得10
9秒前
bkagyin应助禾斗石开采纳,获得20
10秒前
Akim应助ren采纳,获得10
10秒前
FashionBoy应助大大怪将军采纳,获得10
10秒前
11秒前
落伍少年发布了新的文献求助10
11秒前
风xxq发布了新的文献求助10
11秒前
自信飞柏完成签到 ,获得积分10
12秒前
kingyuan发布了新的文献求助100
12秒前
现实的航空完成签到,获得积分10
12秒前
13秒前
13秒前
eden完成签到,获得积分10
15秒前
电冰箱完成签到,获得积分20
15秒前
慕青应助el采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980