A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰烬完成签到,获得积分10
刚刚
路在脚下完成签到 ,获得积分10
刚刚
1秒前
于浩完成签到 ,获得积分10
1秒前
其实完成签到,获得积分10
1秒前
wend完成签到 ,获得积分10
2秒前
小黑完成签到,获得积分10
2秒前
彩色白山完成签到,获得积分10
3秒前
TY发布了新的文献求助10
3秒前
Antoneva完成签到,获得积分10
4秒前
852应助一区发十篇采纳,获得10
4秒前
Urusaiina完成签到,获得积分10
4秒前
whandzxl完成签到,获得积分10
4秒前
浮游应助奔奔采纳,获得10
4秒前
4秒前
5秒前
limiao完成签到,获得积分10
5秒前
skinnylove完成签到,获得积分10
5秒前
fuxiao完成签到 ,获得积分10
5秒前
江你一军完成签到,获得积分10
5秒前
充电宝应助Yinp采纳,获得10
6秒前
顺利的雪莲完成签到 ,获得积分10
6秒前
6秒前
幽默的太阳完成签到 ,获得积分10
6秒前
hahaha发布了新的文献求助10
6秒前
QiongYin_123完成签到 ,获得积分10
7秒前
怡然浩然完成签到,获得积分10
8秒前
和谐的醉山完成签到,获得积分0
8秒前
大雪完成签到 ,获得积分10
8秒前
东方不言完成签到,获得积分10
9秒前
打打应助jiangxiaoxu采纳,获得10
9秒前
二巨头完成签到,获得积分10
9秒前
子平完成签到 ,获得积分0
10秒前
默默莫莫发布了新的文献求助10
11秒前
whitexue发布了新的文献求助10
11秒前
贵金属完成签到,获得积分10
11秒前
Tiffy完成签到,获得积分10
12秒前
先锋老刘001完成签到,获得积分10
12秒前
Sam完成签到,获得积分10
12秒前
wanci应助morry5007采纳,获得10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347908
求助须知:如何正确求助?哪些是违规求助? 4482121
关于积分的说明 13948889
捐赠科研通 4380545
什么是DOI,文献DOI怎么找? 2407020
邀请新用户注册赠送积分活动 1399566
关于科研通互助平台的介绍 1372819