A Comparative Analysis of Early Stage Diabetes Prediction using Machine Learning and Deep Learning Approach

糖尿病 人工智能 机器学习 胰岛素 血糖 计算机科学 分类器(UML) 深度学习 医学 疾病 内科学 内分泌学
作者
Md Abu Rumman Refat,Md Al Amin,Chetna Kaushal,Mst. Nilufa Yeasmin,Md Khairul Islam
标识
DOI:10.1109/ispcc53510.2021.9609364
摘要

Diabetes is a disease that affects how your body processes blood sugar and is often referred to as diabetes mellitus. Insulin insufficiency and ineffective insulin use coincide when the pancreas cannot produce enough insulin or the human body cannot use the insulin that is produced. Insulin is a hormone produced by the pancreas that helps in the transport of glucose from food into cells for use as energy. The common effect of uncontrolled diabetes is hyper-glycemia, or high blood sugar, which plus other health concerns, raises serious health issues, majorly towards the nerves and blood vessels. According to 2014 statistics, people aged 18 or older had diabetes and, according to 2019 statistics, diabetes alone caused 1.5 million deaths. However, because of the rapid growth of machine learning(ML) and deep learning (DL) classification algorithms, indifferent sectors, like health science, it is now remarkably easy to detect diabetes in its early stages. In this experiment, we have conducted a comparative analysis of several ML and DL techniques for early diabetes disease prediction. Additionally, we used a diabetes dataset from the UCI repository that has 17 attributes, including class, and evaluated the performance of all proposed machine learning and deep learning classification algorithms using a variety of performance metrics. According to our experiments, the XGBoost classifier outperformed the rest of the algorithms by approximately 100.0%, while the rest of the algorithms were over 90.0% accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohongzz发布了新的文献求助10
刚刚
汉堡包应助负责的方盒采纳,获得10
1秒前
Ava应助trophozoite采纳,获得10
2秒前
小马甲应助阿易采纳,获得10
2秒前
桐桐应助嘎嘎嘎采纳,获得10
2秒前
Wen完成签到,获得积分10
2秒前
3秒前
Akim应助体贴的采蓝采纳,获得10
3秒前
4秒前
4秒前
吭哧吭哧完成签到,获得积分10
4秒前
SUNHAO发布了新的文献求助10
5秒前
xuexue发布了新的文献求助10
5秒前
6加x完成签到 ,获得积分10
6秒前
JINYUBAO发布了新的文献求助10
6秒前
Qi发布了新的文献求助20
7秒前
iNk应助zhangxasq采纳,获得10
7秒前
8秒前
领导范儿应助xz采纳,获得10
8秒前
大树梨发布了新的文献求助10
10秒前
南村孩童发布了新的文献求助10
11秒前
12秒前
12秒前
hah发布了新的文献求助10
13秒前
13秒前
充电宝应助研友_LjDyNZ采纳,获得20
13秒前
laber应助酷酷的听南采纳,获得30
13秒前
SUNHAO完成签到,获得积分10
14秒前
小二郎应助负责的方盒采纳,获得10
14秒前
级积极发布了新的文献求助10
14秒前
NexusExplorer应助将寻采纳,获得30
15秒前
研友_V8Qmr8发布了新的文献求助10
15秒前
16秒前
llllll完成签到,获得积分10
16秒前
hulahula发布了新的文献求助10
17秒前
17秒前
18秒前
hai发布了新的文献求助10
19秒前
科研通AI6应助liang2508采纳,获得10
20秒前
985211发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743