Federated Deep Learning for Zero-Day Botnet Attack Detection in IoT-Edge Devices

僵尸网络 计算机科学 计算机网络 边缘计算 架空(工程) GSM演进的增强数据速率 边缘设备 服务器 深度学习 人工神经网络 人工智能 互联网 云计算 操作系统
作者
Segun I. Popoola,Ruth Ande,Bamidele Adebisi,Guan Gui,Mohammad Hammoudeh,Olamide Jogunola
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 3930-3944 被引量:176
标识
DOI:10.1109/jiot.2021.3100755
摘要

Deep Learning (DL) has been widely proposed for botnet attack detection in Internet of Things (IoT) networks.However, the traditional Centralized DL (CDL) method cannot be used to detect previously unknown (zero-day) botnet attack without breaching the data privacy rights of the users.In this paper, we propose Federated Deep Learning (FDL) method for zero-day botnet attack detection to avoid data privacy leakage in IoT edge devices.In this method, an optimal Deep Neural Network (DNN) architecture is employed for network traffic classification.A model parameter server remotely coordinates the independent training of the DNN models in multiple IoT edge devices, while Federated Averaging (FedAvg) algorithm is used to aggregate local model updates.A global DNN model is produced after a number of communication rounds between the model parameter server and the IoT edge devices.Zero-day botnet attack scenarios in IoT edge devices is simulated with the Bot-IoT and N-BaIoT data sets.Experiment results show that FDL model: (a) detects zero-day botnet attacks with high classification performance; (b) guarantees data privacy and security; (c) has low communication overhead (d) requires low memory space for the storage of training data; and (e) has low network latency.Therefore, FDL method outperformed CDL, Localized DL, and Distributed DL methods in this application scenario.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Helen完成签到,获得积分10
刚刚
Kai发布了新的文献求助10
2秒前
逍遥完成签到,获得积分10
2秒前
cxm666发布了新的文献求助10
2秒前
mrright完成签到 ,获得积分10
2秒前
干净盼山完成签到,获得积分10
3秒前
传奇3应助zc采纳,获得10
3秒前
4秒前
希望天下0贩的0应助Helen采纳,获得80
5秒前
5秒前
6秒前
Oak完成签到 ,获得积分10
6秒前
gua完成签到,获得积分10
6秒前
bkagyin应助Jt采纳,获得10
7秒前
8秒前
Dr.Joseph发布了新的文献求助10
9秒前
哈哈哈哈发布了新的文献求助10
10秒前
11秒前
tomorrow完成签到 ,获得积分10
11秒前
一一完成签到,获得积分10
12秒前
顾矜应助mine采纳,获得10
12秒前
科目三应助田茂青采纳,获得10
14秒前
黄文霜发布了新的文献求助10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
灯火阑珊发布了新的文献求助10
14秒前
大个应助科研通管家采纳,获得10
14秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
小蘑菇应助makabaka采纳,获得10
16秒前
Ava应助嗯嗯嗯采纳,获得10
16秒前
高大的网络完成签到,获得积分10
17秒前
李健的小迷弟应助985211采纳,获得10
18秒前
19秒前
万能图书馆应助Hayat采纳,获得20
20秒前
遇见馅儿饼完成签到 ,获得积分10
23秒前
arcremnant完成签到,获得积分10
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547