Multimodal Disentangled Variational Autoencoder With Game Theoretic Interpretability for Glioma Grading

计算机科学 人工智能 自编码 模式识别(心理学) 机器学习 模式 深度学习 可解释性 分级(工程) 互补性(分子生物学) 社会学 土木工程 社会科学 生物 工程类 遗传学
作者
Jianhong Cheng,Min Gao,Jin Liu,Hailin Yue,Hulin Kuang,Jun Liu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 673-684 被引量:41
标识
DOI:10.1109/jbhi.2021.3095476
摘要

Effective fusion of multimodal magnetic resonance imaging (MRI) is of great significance to boost the accuracy of glioma grading thanks to the complementary information provided by different imaging modalities. However, how to extract the common and distinctive information from MRI to achieve complementarity is still an open problem in information fusion research. In this study, we propose a deep neural network model termed as multimodal disentangled variational autoencoder (MMD-VAE) for glioma grading based on radiomics features extracted from preoperative multimodal MRI images. Specifically, the radiomics features are quantized and extracted from the region of interest for each modality. Then, the latent representations of variational autoencoder for these features are disentangled into common and distinctive representations to obtain the shared and complementary data among modalities. Afterwards, cross-modality reconstruction loss and common-distinctive loss are designed to ensure the effectiveness of the disentangled representations. Finally, the disentangled common and distinctive representations are fused to predict the glioma grades, and SHapley Additive exPlanations (SHAP) is adopted to quantitatively interpret and analyze the contribution of the important features to grading. Experimental results on two benchmark datasets demonstrate that the proposed MMD-VAE model achieves encouraging predictive performance (AUC:0.9939) on a public dataset, and good generalization performance (AUC:0.9611) on a cross-institutional private dataset. These quantitative results and interpretations may help radiologists understand gliomas better and make better treatment decisions for improving clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hopper完成签到,获得积分10
刚刚
项听蓉完成签到,获得积分10
刚刚
CodeCraft应助我喜欢大学霸采纳,获得10
1秒前
冬青完成签到,获得积分10
1秒前
宅心仁厚完成签到 ,获得积分10
1秒前
Fran07发布了新的文献求助30
2秒前
风中鲂完成签到,获得积分10
2秒前
壮观的白枫完成签到,获得积分20
2秒前
foxdaopo完成签到,获得积分10
3秒前
Emily完成签到,获得积分10
3秒前
知足且上进完成签到,获得积分10
3秒前
木子木子粒完成签到 ,获得积分10
3秒前
73Jennie123完成签到,获得积分10
3秒前
电闪完成签到,获得积分10
3秒前
4秒前
林慕然2023完成签到,获得积分10
4秒前
4秒前
5秒前
坦率的世开完成签到,获得积分10
5秒前
sasa完成签到,获得积分10
5秒前
汉堡包应助日天的马铃薯采纳,获得10
5秒前
jinjun发布了新的文献求助10
5秒前
大白完成签到 ,获得积分10
5秒前
hope完成签到,获得积分10
6秒前
zwk发布了新的文献求助20
6秒前
昂叔的头发丝儿完成签到,获得积分10
7秒前
啦啦啦啦完成签到,获得积分10
7秒前
Jasper应助sasa采纳,获得10
7秒前
8秒前
sxqt完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
隐形曼青应助优雅的白安采纳,获得10
9秒前
刘子龙发布了新的文献求助10
10秒前
11秒前
Cheng完成签到 ,获得积分10
11秒前
yanziwu94完成签到,获得积分10
13秒前
蜂蜜完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Frank发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Greene's Protective Groups in Organic Synthesis 2025 600
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666701
求助须知:如何正确求助?哪些是违规求助? 3225657
关于积分的说明 9764320
捐赠科研通 2935460
什么是DOI,文献DOI怎么找? 1607736
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735281