Urban Morphological Parameters of the Main Cities in China and Their Application in the WRF Model

天气研究与预报模式 中国 风速 城市气候 环境科学 地理 气象学 城市规划 城市形态 气候学 土木工程 地质学 工程类 考古
作者
Yong Sun,Ning Zhang,Shiguang Miao,Fanhua Kong,Yizhou Zhang,Nana Li
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:13 (8) 被引量:47
标识
DOI:10.1029/2020ms002382
摘要

Abstract As one of the effective ways to study urban climate and environmental problems, the performance of numerical model could be improved in urban areas by enhancing the description of urban morphology. One of the largest challenges faced by researchers is the lack of real urban canopy parameters (UCPs) to represent urban morphological characteristics. In this study, the urban morphological parameters were estimated and a high‐resolution urban morphological parameter data set for the main cities in China was developed. The results show that the distribution of urban morphological parameters is of regional characteristics and cities in China are mainly dominated by low‐rise buildings. Chinese cities can be broadly divided into two types based on the probability distribution of building height: single‐peak and double‐peak. The number of low‐rise buildings in single‐peak cities is much larger than that of double‐peak cities, which contributes to the difference between the two types of cities. The equivalent street width of northern cities in China is higher than that of southern cities, and the equivalent building width is almost the same. However, the default UCPs of the Weather Research and Forecasting (WRF) model distort the morphology of Chinese cities. The sensitivity of the WRF model to urban morphological parameters was also investigated in Nanjing. Overall, our results indicate that urban morphological parameters have a significant influence on the energy balance process in cities and improve the performance of the WRF model in simulating the air temperature and canopy wind speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LU完成签到 ,获得积分10
刚刚
zky0216发布了新的文献求助10
1秒前
Kin_L完成签到,获得积分10
1秒前
2秒前
一一发布了新的文献求助10
2秒前
丙队长发布了新的文献求助10
3秒前
舒适行天完成签到,获得积分10
3秒前
善学以致用应助wuyudelan采纳,获得10
5秒前
zky0216完成签到,获得积分10
5秒前
6秒前
毛豆爸爸发布了新的文献求助10
8秒前
坦率的丹烟完成签到 ,获得积分10
8秒前
风趣的梦露完成签到 ,获得积分10
8秒前
认真的南珍完成签到 ,获得积分20
9秒前
10秒前
11秒前
林森发布了新的文献求助10
13秒前
13秒前
那里有颗星星完成签到,获得积分10
13秒前
丙队长完成签到,获得积分10
14秒前
酷炫蚂蚁完成签到,获得积分20
15秒前
15秒前
科研通AI5应助叶子采纳,获得10
15秒前
感激不尽完成签到,获得积分10
15秒前
wuyudelan完成签到,获得积分10
16秒前
zstyry9998完成签到,获得积分10
18秒前
RH发布了新的文献求助10
18秒前
冷傲迎梦发布了新的文献求助10
18秒前
20秒前
weiv完成签到,获得积分10
22秒前
Teslwang完成签到,获得积分10
22秒前
22秒前
22秒前
zhangzhen发布了新的文献求助10
22秒前
英姑应助彬彬采纳,获得10
23秒前
传奇3应助maomao采纳,获得10
25秒前
稀罕你发布了新的文献求助10
26秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
26秒前
naonao完成签到,获得积分20
26秒前
摆烂的实验室打工人完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824