Learning Prognostic Models Using Disease Progression Patterns: Predicting the Need for Non-Invasive Ventilation in Amyotrophic Lateral Sclerosis

肌萎缩侧索硬化 可解释性 疾病 医学 重症监护医学 生活质量(医疗保健) 呼吸衰竭 物理医学与康复 预期寿命 内科学 机器学习 计算机科学 环境卫生 护理部 人口
作者
Andreia S. Martins,Marta Gromicho,Susana Pinto,Mamede de Carvalho,Sara C. Madeira
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2572-2583 被引量:9
标识
DOI:10.1109/tcbb.2021.3078362
摘要

Amyotrophic Lateral Sclerosis is a devastating neurodegenerative disease causing rapid degeneration of motor neurons and usually leading to death by respiratory failure. Since there is no cure, treatment's goal is to improve symptoms and prolong survival. Non-invasive Ventilation (NIV) is an effective treatment, leading to extended life expectancy and improved quality of life. In this scenario, it is paramount to predict its need in order to allow preventive or timely administration. In this work, we propose to use itemset mining together with sequential pattern mining to unravel disease presentation patterns together with disease progression patterns by analysing, respectively, static data collected at diagnosis and longitudinal data from patient follow-up. The goal is to use these static and temporal patterns as features in prognostic models, enabling to take disease progression into account in predictions and promoting model interpretability. As case study, we predict the need for NIV within 90, 180 and 365 days (short, mid and long-term predictions). The learnt prognostic models are promising. Pattern evaluation through growth rate suggests bulbar function and phrenic nerve response amplitude, additionally to respiratory function, are significant features towards determining patient evolution. This confirms clinical knowledge regarding relevant biomarkers of disease progression towards respiratory insufficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助义气绿柳采纳,获得10
1秒前
踏实的诗筠完成签到 ,获得积分10
1秒前
ye发布了新的文献求助10
2秒前
2秒前
Micky发布了新的文献求助10
3秒前
ruxing完成签到,获得积分10
3秒前
影像大侠完成签到,获得积分10
3秒前
852应助HYG采纳,获得30
4秒前
麦麦完成签到,获得积分10
4秒前
田様应助Isabel采纳,获得10
4秒前
gezid完成签到 ,获得积分10
4秒前
5秒前
5秒前
niu1发布了新的文献求助10
5秒前
Intro发布了新的文献求助10
5秒前
舒服的冬天完成签到,获得积分10
6秒前
Helical给Helical的求助进行了留言
6秒前
甜蜜晓绿完成签到,获得积分10
6秒前
7秒前
钱多多完成签到,获得积分10
7秒前
baekhyun完成签到,获得积分20
7秒前
7秒前
dpp发布了新的文献求助10
7秒前
今今完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
打打应助无情的白桃采纳,获得10
9秒前
香蕉觅云应助与光同晨采纳,获得10
10秒前
10秒前
小蘑菇应助clm采纳,获得10
10秒前
yhnsag完成签到,获得积分10
10秒前
Lin完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
Rain发布了新的文献求助10
12秒前
butiflow完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762