已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Prognostic Models Using Disease Progression Patterns: Predicting the Need for Non-Invasive Ventilation in Amyotrophic Lateral Sclerosis

肌萎缩侧索硬化 可解释性 疾病 医学 重症监护医学 生活质量(医疗保健) 呼吸衰竭 物理医学与康复 预期寿命 内科学 机器学习 计算机科学 人口 护理部 环境卫生
作者
Andreia S. Martins,Marta Gromicho,Susana Pinto,Mamede de Carvalho,Sara C. Madeira
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 2572-2583 被引量:9
标识
DOI:10.1109/tcbb.2021.3078362
摘要

Amyotrophic Lateral Sclerosis is a devastating neurodegenerative disease causing rapid degeneration of motor neurons and usually leading to death by respiratory failure. Since there is no cure, treatment's goal is to improve symptoms and prolong survival. Non-invasive Ventilation (NIV) is an effective treatment, leading to extended life expectancy and improved quality of life. In this scenario, it is paramount to predict its need in order to allow preventive or timely administration. In this work, we propose to use itemset mining together with sequential pattern mining to unravel disease presentation patterns together with disease progression patterns by analysing, respectively, static data collected at diagnosis and longitudinal data from patient follow-up. The goal is to use these static and temporal patterns as features in prognostic models, enabling to take disease progression into account in predictions and promoting model interpretability. As case study, we predict the need for NIV within 90, 180 and 365 days (short, mid and long-term predictions). The learnt prognostic models are promising. Pattern evaluation through growth rate suggests bulbar function and phrenic nerve response amplitude, additionally to respiratory function, are significant features towards determining patient evolution. This confirms clinical knowledge regarding relevant biomarkers of disease progression towards respiratory insufficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助科研1采纳,获得10
刚刚
刚刚
2秒前
江知之完成签到 ,获得积分0
3秒前
4秒前
多比完成签到 ,获得积分10
5秒前
5秒前
着急的若魔完成签到,获得积分10
6秒前
SciGPT应助KDS采纳,获得10
7秒前
北国发布了新的文献求助10
8秒前
良药发布了新的文献求助10
10秒前
神冰小酱完成签到,获得积分10
12秒前
自由的未来完成签到,获得积分10
14秒前
16秒前
赖皮蛇完成签到,获得积分10
18秒前
可乐不加冰完成签到 ,获得积分10
18秒前
19秒前
科研1发布了新的文献求助10
21秒前
阿九发布了新的文献求助10
23秒前
shjyang完成签到,获得积分10
24秒前
iNk应助Fury采纳,获得20
26秒前
28秒前
shame完成签到 ,获得积分10
29秒前
Wilddeer完成签到 ,获得积分10
31秒前
32秒前
midokaori发布了新的文献求助10
33秒前
一颗有理想的蛋完成签到 ,获得积分10
33秒前
凡迪亚比给罗小球的求助进行了留言
35秒前
36秒前
共享精神应助知性的采珊采纳,获得10
37秒前
39秒前
顾矜应助andrele采纳,获得30
43秒前
43秒前
呵呵哒发布了新的文献求助10
44秒前
hhchhcmxhf发布了新的文献求助10
46秒前
Owen应助shinhee采纳,获得10
46秒前
量子星尘发布了新的文献求助10
47秒前
47秒前
49秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210