Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation

水质 深度学习 人工神经网络 水资源 人工智能 插补(统计学) 计算机科学 缺少数据 均方误差 数据挖掘 机器学习 统计 数学 生态学 生物
作者
Sakshi Khullar,Nanhay Singh
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:29 (9): 12875-12889 被引量:109
标识
DOI:10.1007/s11356-021-13875-w
摘要

Water is a prime necessity for the survival and sustenance of all living beings. Over the past few years, the water quality of rivers is adversely affected due to harmful wastes and pollutants. This ever-increasing water pollution is a big matter of concern as it deteriorating the water quality, making it unfit for any type of use. Recently, water quality modelling using machine learning techniques has generated a lot of interest and can be very beneficial in ecological and water resources management. However, they suffer many times from high computational complexity and high prediction error. The good performance of a deep neural network like long short-term memory network (LSTM) has been exploited for the time-series data. In this paper, a deep learning-based Bi-LSTM model (DLBL-WQA) is introduced to forecast the water quality factors of Yamuna River, India. The existing schemes do not perform missing value imputation and focus only on the learning process without including a loss function pertaining to training error. The proposed model shows a novel scheme which includes missing value imputation in the first phase, the second phase generates the feature maps from the given input data, the third phase includes a Bi-LSTM architecture to improve the learning process, and finally, an optimized loss function is applied to reduce the training error. Thus, the proposed model improves forecasting accuracy. Data comprising monthly samples of different water quality factors were collected for 6 years (2013-2019) at several locations in the Delhi region. Experimental results reveal that predicted values of the model and the actual values were in a close agreement and could reveal a future trend. The performance of our model was compared with various state of the art techniques like SVR, random forest, artificial neural network, LSTM, and CNN-LSTM. To check the accuracy, metrics like root mean square errors (RMSE), the mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE) have been used. Experimental analysis is carried out by measuring the COD and BOD levels. COD analysis reveals the MSE, RMSE, MAE, and MAPE values as 0.015, 0.117, 0.115, and 20.32, respectively, for the Palla region. Similarly, BOD analysis indicates the MSE, RMSE, MAE, and MAPE values as 0.107, 0.108, 0.124, and 18.22, respectively. A comparative analysis reveals that the proposed model outperforms all other models in terms of the best forecasting accuracy and lowest error rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyric_发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
科研凯凯发布了新的文献求助10
3秒前
大昭完成签到,获得积分10
4秒前
EasyNan应助糊涂涂采纳,获得10
5秒前
6秒前
灼才完成签到,获得积分10
7秒前
科研通AI5应助777采纳,获得10
8秒前
8秒前
xu发布了新的文献求助10
8秒前
9秒前
9秒前
科研凯凯完成签到,获得积分10
10秒前
星辰大海应助御风采纳,获得10
10秒前
10秒前
静静完成签到 ,获得积分10
11秒前
牙牙发布了新的文献求助10
12秒前
shijie805发布了新的文献求助10
14秒前
14秒前
称心寒松发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
鱼缸发布了新的文献求助10
17秒前
吃饭必加葱完成签到 ,获得积分10
18秒前
牙牙完成签到,获得积分10
18秒前
18秒前
CodeCraft应助xu采纳,获得10
18秒前
Eden发布了新的文献求助10
18秒前
科目三应助陈奥采纳,获得10
19秒前
xiaoE发布了新的文献求助10
19秒前
filory发布了新的文献求助10
19秒前
yy应助中央戏精学院采纳,获得10
20秒前
深情安青应助难过太君采纳,获得10
20秒前
20秒前
文章刻骨几人知完成签到,获得积分10
20秒前
jiahu发布了新的文献求助10
21秒前
D515发布了新的文献求助50
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427