Nonconvergence, Covariance Constraints, and Class Enumeration in Growth Mixture Models

协方差 约束(计算机辅助设计) 班级(哲学) 同方差 混合模型 趋同(经济学) 数学 统计 计量经济学 枚举 计算机科学 人工智能 异方差 几何学 经济 经济增长 组合数学
作者
Daniel McNeish,Jeffrey R. Harring,Daniel J. Bauer
标识
DOI:10.31234/osf.io/tps82
摘要

Growth mixture models (GMMs) are a popular method to identify latent classes of growth trajectories. One shortcoming of GMMs is nonconvergence, which often leads researchers to apply covariance equality constraints to simplify estimation. This approach is criticized because it introduces a dubious homoskedasticity assumption across classes. Alternative methods have been proposed to reduce nonconvergence without imposing covariance equality constraints, and though studies have shown that these methods perform well when the correct number of classes is known, research has not examined whether they can accurately identify the number of classes. Given that selecting the number of classes tends to be the most difficult aspect of GMMs, more information about class enumeration performance is crucial to assess the potential utility of these methods. We conduct an extensive simulation based on model characteristics from studies in the PTSD literature to explore class enumeration and classification accuracy of methods for improving nonconvergence. Despite its popularity, results showed that typical approach of applying covariance equality constraints performs quite poorly and is not recommended. However, we recommended covariance pattern GMMs because they (a) had the highest convergence rates, (b) were most likely to identify the correct number of classes, and (c) had the highest classification accuracy in many conditions, even with modest sample sizes. An analysis of empirical PTSD data is provided to show that the typical 4-Class solution found in many empirical PTSD studies may be an artefact of the covariance equality constraint method that has permeated this literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的果汁完成签到,获得积分20
1秒前
Laus完成签到,获得积分20
2秒前
搜集达人应助gzsy采纳,获得10
2秒前
俭朴夜雪发布了新的文献求助10
2秒前
Hello应助橙橙梨梨茶采纳,获得10
3秒前
认真的rain发布了新的文献求助50
4秒前
深情的鑫鹏完成签到,获得积分10
4秒前
寒涛先生发布了新的文献求助10
5秒前
空心发布了新的文献求助30
5秒前
希望天下0贩的0应助星星采纳,获得10
6秒前
krkr完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI5应助111111111采纳,获得10
7秒前
7秒前
粗犷的书包完成签到,获得积分10
8秒前
Jasper应助shanbaibai采纳,获得10
8秒前
8秒前
Laus发布了新的文献求助10
11秒前
11秒前
cheung发布了新的文献求助10
11秒前
害羞向日葵完成签到 ,获得积分10
12秒前
ppp完成签到,获得积分10
13秒前
唠叨的白萱完成签到,获得积分10
14秒前
傲娇的凡旋完成签到,获得积分10
14秒前
fusheng完成签到 ,获得积分10
15秒前
15秒前
兔子完成签到,获得积分20
16秒前
Zzzzzzzzzzz完成签到,获得积分20
16秒前
16秒前
17秒前
18秒前
19秒前
谭谨川发布了新的文献求助10
19秒前
cheung完成签到,获得积分10
19秒前
乌日汗完成签到,获得积分10
20秒前
20秒前
20秒前
公茂源完成签到 ,获得积分10
21秒前
共享精神应助spurs17采纳,获得30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808