Nonconvergence, Covariance Constraints, and Class Enumeration in Growth Mixture Models

协方差 约束(计算机辅助设计) 班级(哲学) 同方差 混合模型 趋同(经济学) 数学 统计 计量经济学 枚举 计算机科学 人工智能 异方差 几何学 经济 经济增长 组合数学
作者
Daniel McNeish,Jeffrey R. Harring,Daniel J. Bauer
标识
DOI:10.31234/osf.io/tps82
摘要

Growth mixture models (GMMs) are a popular method to identify latent classes of growth trajectories. One shortcoming of GMMs is nonconvergence, which often leads researchers to apply covariance equality constraints to simplify estimation. This approach is criticized because it introduces a dubious homoskedasticity assumption across classes. Alternative methods have been proposed to reduce nonconvergence without imposing covariance equality constraints, and though studies have shown that these methods perform well when the correct number of classes is known, research has not examined whether they can accurately identify the number of classes. Given that selecting the number of classes tends to be the most difficult aspect of GMMs, more information about class enumeration performance is crucial to assess the potential utility of these methods. We conduct an extensive simulation based on model characteristics from studies in the PTSD literature to explore class enumeration and classification accuracy of methods for improving nonconvergence. Despite its popularity, results showed that typical approach of applying covariance equality constraints performs quite poorly and is not recommended. However, we recommended covariance pattern GMMs because they (a) had the highest convergence rates, (b) were most likely to identify the correct number of classes, and (c) had the highest classification accuracy in many conditions, even with modest sample sizes. An analysis of empirical PTSD data is provided to show that the typical 4-Class solution found in many empirical PTSD studies may be an artefact of the covariance equality constraint method that has permeated this literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa完成签到,获得积分10
刚刚
wanci应助邓代容采纳,获得10
1秒前
wang完成签到,获得积分10
1秒前
scc完成签到,获得积分10
1秒前
七子完成签到,获得积分10
1秒前
Earnestlee完成签到,获得积分10
2秒前
zzx396完成签到,获得积分0
3秒前
3秒前
K3完成签到,获得积分10
3秒前
hahasun完成签到,获得积分10
4秒前
过于喧嚣的孤独完成签到,获得积分10
4秒前
shin0324完成签到,获得积分10
5秒前
xzy998应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
摆烂完成签到 ,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
晶格畸变完成签到,获得积分10
6秒前
mufcyang完成签到,获得积分10
6秒前
大林完成签到,获得积分10
6秒前
Muhi完成签到,获得积分10
6秒前
汉堡包应助YF采纳,获得10
7秒前
Survive完成签到,获得积分10
7秒前
情怀应助yy采纳,获得10
7秒前
贵贵完成签到,获得积分10
8秒前
CipherSage应助蔡6705采纳,获得10
8秒前
lhcshuang发布了新的文献求助10
9秒前
陈富贵完成签到 ,获得积分10
10秒前
TanXu完成签到 ,获得积分10
10秒前
南冥完成签到 ,获得积分10
11秒前
无私的芹应助狂野忆文采纳,获得10
11秒前
所所应助狂野忆文采纳,获得10
11秒前
研友_VZG7GZ应助狂野忆文采纳,获得10
11秒前
斯文败类应助狂野忆文采纳,获得10
11秒前
无花果应助狂野忆文采纳,获得10
11秒前
上官若男应助狂野忆文采纳,获得10
11秒前
赘婿应助狂野忆文采纳,获得10
11秒前
顾矜应助狂野忆文采纳,获得10
11秒前
情怀应助狂野忆文采纳,获得10
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027