The behavior of the Steinmetz coefficient has been described for several different materials: steels with 3.2% Si and 6.5% Si, MnZn ferrite and Ni–Fe alloys. It is shown that, for steels, the Steinmetz law achieves R2>0.999 only between 0.3 and 1.2 T, which is the interval where domain wall movement dominates. The anisotropy of Steinmetz coefficient for non-oriented (NO) steel is also discussed. It is shown that for a NO 3.2% Si steel with a strong Goss component in texture, the power law coefficient and remanence decreases monotonically with the direction of measurement going from rolling direction (RD) to transverse direction (TD), although coercive field increased. The remanence behavior can be related to the minimization of demagnetizing field at the surface grains. The data appear to indicate that the Steinmetz coefficient increases as magnetocrystalline anisotropy constant decreases.