张量(固有定义)
球谐函数
数学分析
数学
傅里叶级数
分布(数学)
笛卡尔坐标系
系列(地层学)
基础(线性代数)
旋转(数学)
代表(政治)
笛卡尔张量
空格(标点符号)
单位球
单位(环理论)
分布函数
几何学
张量场
物理
张量密度
广义相对论的精确解
计算机科学
量子力学
古生物学
数学教育
政治
政治学
法学
生物
操作系统
标识
DOI:10.1016/0020-7225(84)90090-9
摘要
Distribution of directional data is characterized by what is termed fabric tensors. A formal least square approximation is applied, and three kinds of fabric tensors are defined in connection with the choice of a basis of the space of functions on a unit sphere or a unit circle. All the resulting equations are Cartesian tensor equations, and they are interpreted in terms of the representation theory of the rotation group and the potential theory in electrodynamics. It is also shown how this characterization is related to the spherical harmonics expansion or the Fourier series expansion. Finally, a method of statistical test is presented in the Cartesian tensor form to check the true form of the distribution. A physical example is also given to illustrate the proposed technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI