普法芬
消光(光学矿物学)
统计物理学
缩放比例
期限(时间)
应用数学
标度律
理论(学习稳定性)
计算机科学
数学
物理
纯数学
量子力学
几何学
机器学习
光学
作者
Johannes Knebel,Torben Krüger,Markus Weber,Erwin Frey
标识
DOI:10.1103/physrevlett.110.168106
摘要
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
科研通智能强力驱动
Strongly Powered by AbleSci AI